Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 0

Как определить полярность электролитических конденсаторов, где плюс и минус?

Керамические конденсаторы SMD ввиду их малых габаритов иногда маркируются кодом, состоящим из одного или двух символов и цифры. Первый символ, если он есть – код изготовителя (напр. K для Kemet, и т.д.), второй символ – мантисса и цифра показатель степени (множитель) емкости в pF. Например S3 – 4. 7nF (4.7 x 10^3 Pf) конденсатор от неизвестного изготовителя, в то время как KA2 100 pF (1.0 x 10^2 PF) конденсатор от фирмы Kemet.

Конденсаторы изготавливаются с различными типами диэлектриков: NP0, X7R, Z5U и Y5V …. Диэлектрик NP0(COG) обладает низкой диэлектрической проницаемостью, но хорошей температурной стабильностью (ТКЕ близок к нулю). SMD конденсаторы больших номиналов, изготовленные с применением этого диэлектрика наиболее дорогостоящие. Диэлектрик X7R имеет более высокую диэлектрическую проницаемость, но меньшую температурную стабильность. Диэлектрики Z5U и Y5V имеют очень высокую диэлектрическую проницаемость, что позволяет изготовить конденсаторы с большим значением емкости, но имеющих значительный разброс параметров. SMD конденсаторы с диэлектриками X7R и Z5U используются в цепях общего назначения.

В общем случае керамические конденсаторы на

основе диэлектрика с высокой проницаемостью обозначаются

согласно EIA тремя символами, первые два из которых указывают

на нижнюю и верхнюю границы рабочего диапазона температур, а

третий – допустимое изменение емкости в этом диапазоне.

Расшифровка символов кода приведена в

таблице.

Примеры:

Z5U – конденсатор с точностью

+22, -56% в диапазоне температур от +10 до +85В°C.X7R – конденсатор с точностью В±15% в диапазоне

температур от -55 до +125В°C.

Маркировка электролитических конденсаторов SMD.

Электролитические конденсаторы SMD часто маркируются их емкостью и рабочим напряжением, например 10 6V – 10 Вµ F 6V. Иногда этот код используется вместо обычного, который состоит из символа и 3 цифр. Символ указывает рабочее напряжение, а 3 цифры (2 цифры и множитель) дают емкость в pF.

Срез или полоса указывает положительный вывод.

Символ Напряжение

eВ  2.5

GВ  4

JВ  6.3

AВ  10

CВ  16

DВ  20

EВ  25

VВ  35

HВ  50

Например, конденсатор маркирован A475 – 4. 7mF 10V

475 = 47 x 10^5pF = 4.7 x 10^6pF = 4. 7mF

Приведенные ниже принципы кодовой маркировки применяются такими известными фирмами как PANASONIC, HITACHI и др. Различают три основных способа кодирования.

Код содержит два или три знака (буквы или цифры), обозначающие рабочее напряжение и номинальную емкость. Причем буквы обозначают напряжение и емкость, а цифра указывает множитель. В случае двухзначного обозначения не указывается код рабочего напряжения.

Код содержит четыре знака (буквы и цифры), обозначающие номинальную емкость и рабочее напряжение. Буква, стоящая вначале, обозначает рабочее напряжение, последующие знаки — емкость в пикофарадах (пф), а последняя цифра — количество нулей.

Возможны 2 варианта кодировки емкости:

а) первые две цифры указывают номинал в пФ, третья — количество нулей;

б) емкость указывают в микрофарадах, знак р выполняет функцию десятичной запятой.

Ниже приведены примеры маркировки конденсаторов емкостью 4.7 мкФ и рабочим напряжением 10 В.

Если величина корпуса позволяет, то код располагается в две строки: на верхней строке указывается номинал емкости, на второй строке — рабочее напряжение. Емкость может

указываться непосредственно в микрофарадах (мкФ) или 8 пикофарадах (пф) с указанием количества нулей. Например, первая строка — 15, вторая строка — 35V означает, что конденсатор имеет емкость 15 мкФ и рабочее напряжение 35 В.

Маркировка Танталовых SMD конденсаторов.

Маркировка танталовых конденсаторов состоит из буквенного кода номинального напряжения в соответствии со следующей таблицей:

За ним следует трехзначный код номинала емкости в pF, в которомпоследняя цифра обозначает количество нулей в номинале. Например, маркировка E105 обозначает конденсатор емкостью 1 000 000pF = 1.0uF с рабочим напряжением 25V.

Емкость и рабочее напряжение танталовых SMD-конденсаторов

обозначаются их прямой записью, например 47 6V – 47uF 6V.

ЗЫ: Взял где взял, обобщил и добавил немного.

Берегите себя и своих близких!

675 Большое значение для правильного выбора того или иного элемента в различных схемах имеет маркировка конденсаторов. По сравнению с резисторами, она довольно сложная и разнообразная. Особые трудности возникают при чтении обозначений на корпусах маленьких конденсаторов в связи с незначительной площадью поверхности. Квалифицированный специалист, постоянно использующий данные устройства в своей работе, должен уверенно читать маркировку изделия и правильно ее расшифровывать.</td>

Маркировка конденсаторов с помощью численно-буквенного кода.

Маркировка конденсаторов может указывать на следующие параметры: Тип конденсатора, его номинальную емкость, допустимое отклонение емкости, Температурный Коэффициент Емкости(ТКЕ), номинальное напряжение работы.

capasexempl2.jpg

Порядок маркировки может быть разным — первой строкой может стоять номинальное напряжение, ТКЕ или фирменный знак производителя. ТКЕ может отсутствовать вовсе, номинальное напряжение тоже указываются не всегда! Практически всегда имеется маркировка номинальной емкости. Что касается емкости, то имеются различные способы ее знаковой кодировки. 1. Маркировка емкости с помощью трех цифр. При такой маркировке первые две цифры указывают на значение емкости в пикофарадах, а последняя на разрядность, т. е. количество нулей, которых к первым двум цифрам необходимо добавить. Но если последняя цифра — «9» происходит деление на 10.

Код Емкость(пФ) Емкость(нФ) Емкость(мкФ)
109 1,0(пФ) 0,001(нФ) 0,000001(мкФ)
159 1,5(пФ) 0,0015(нФ) 0,0000015(мкФ)
229 2,2(пФ) 0,0022(нФ) 0,0000022(мкФ)
339 3,3(пФ) 0,0033(нФ) 0,0000033(мкФ)
479 4,7(пФ) 0,0047(нФ) 0,0000047(мкФ)
689 6,8(пФ) 0,0068(нФ) 0,0000068(мкФ)
100 10(пФ) 0,01(нФ) 0,00001(мкФ)
150 15(пФ) 0,015(нФ) 0,000015(мкФ)
220 22(пФ) 0,022(нФ) 0,000022(мкФ)
330 33(пФ) 0,033(нФ) 0,000033(мкФ)
470 47(пФ) 0,047(нФ) 0,000047(мкФ)
680 68(пФ) 0,068(нФ) 0,000068(мкФ)
101 100(пФ) 0,1(нФ) 0,0001(мкФ)
151 150(пФ) 0,15(нФ) 0,00015(мкФ)
221 220(пФ) 0,22(нФ) 0,00022(мкФ)
331 330(пФ) 0,33(нФ) 0,00033(мкФ)
471 470(пФ) 0,47(нФ) 0,00047(мкФ)
681 680(пФ) 0,68(нФ) 0,00068(мкФ)
102 1000(пФ) 1(нФ) 0,001(мкФ)
152 1500(пФ) 1,5(нФ) 0,0015(мкФ)
222 2200(пФ) 2,2(нФ) 0,0022(мкФ)
332 3300(пФ) 3,3(нФ) 0,0033(мкФ)
472 4700(пФ) 4,7(нФ) 0,0047(мкФ)
682 6800(пФ) 6,8(нФ) 0,0068(мкФ)
103 10000(пФ) 10(нФ) 0,01(мкФ)
153 15000(пФ) 15(нФ) 0,015(мкФ)
223 22000(пФ) 22(нФ) 0,022(мкФ)
333 33000(пФ) 33(нФ) 0,033(мкФ)
473 47000(пФ) 47(нФ) 0,047(мкФ)
683 68000(пФ) 68(нФ) 0,068(мкФ)
104 100000(пФ) 100(нФ) 0,1(мкФ)
154 150000(пФ) 150(нФ) 0,15(мкФ)
224 220000(пФ) 220(нФ) 0,22(мкФ)
334 330000(пФ) 330(нФ) 0,33(мкФ)
474 470000(пФ) 470(нФ) 0,47(мкФ)
684 680000(пФ) 680(нФ) 0,68(мкФ)
105 1000000(пФ) 1000(нФ) 1,0(мкФ)

capasexempl1.jpg

2. Второй вариант — маркировка производится не в пико, а в микрофарадах, причем вместо десятичной точки ставиться буква µ.

Читайте также:  Лучшие модели электрических лобзиков по рейтингам 2020

Код Емкость(мкФ)
µ1 0,1
µ47 0,47
1 1,0
4µ7 4,7
10µ 10,0
100µ 100,0

capasexempl4.jpg

3.Третий вариант.

Код Емкость(мкФ)
p10 0,1пФ
Ip5 0,47пФ
332p 332пФ
1HO или 1no 1нФ
15H или 15no 15,0нФ
33H2 или 33n2 33,2нФ
590H или 590n 590нФ
m15 0,15МкФ
1m5 1,5мкФ
33m2 33,2мкФ
330m 330мкФ
10m 10,0мкФ

У советских конденсаторов вместо латинской «р» ставилось «п».

Допустимое отклонение номинальной емкости маркируется буквенно, часто буква следует за кодом определяющим емкость(той же строкой).

Буквенное обозначение Допуск(%)
B ± 0,1
C ± 0,25
D ± 0,5
F ± 1
G ± 2
J ± 5
K ± 10
M ± 20
N ± 30
Q -10…+30
T -10…+50
Y -10…+100
S -20…+50
Z -20…+80

Далее, может следовать(а может и отсутствовать!) маркировка Температурного Коэффициента Емкости(ТКЕ). Для конденсаторов с ненормируемым ТКЕ кодировка производится с помощью букв.

Допуск при -60²…+85²(%) обозначение Буквенный код
± 10 B
± 20 Z
± 30 D
± 50 X
± 70 E
± 90 F

Конденсаторы с линейной зависимостью от температуры.

ТКЕ(ppm/²C) Буквенный код
100(+130….-49) A
33 N
0(+30….-47) C
-33(+30….-80) H
-75(+30….-80) L
-150(+30….-105) P
-220(+30….-120) R
-330(+60….-180) S
-470(+60….-210) T
-750(+120….-330) U
-500(-250….-670) V
-2200 K

Далее следует напряжение в вольтах, чаще всего — в виде обычного числа. Например, конденсатор на этой картинке промаркирован двумя строчками. Первая(104J) — означает, что его емкость составляет 0,1мкФ(104), допустимое отклонение емкости не превышает ± 5%(J). Вторая(100V) — напряжение в вольтах.

Кроме того, напряжение конденсаторов может быть так же, закодировано с помощью букв(см. таблицу ниже).

Напряжение (В) Буквеный код
1 I
1,6 R
3,2 A
4 C
6,3 B
10 D
16 E
20 F
25 G
32 H
40 C
50 J
63 K
80 L
100 N
125 P
160 Q
200 Z
250 W
315 X
400 Y
450 U
500 V

Применение

Конденсаторы применяются почти во всех областях электротехники. Перечислим лишь некоторые из них:

  • построение цепей обратной связи, фильтров, колебательных контуров;
  • использование в качестве элемента памяти;
  • для компенсации реактивной мощности;
  • для реализации логики в некоторых видах защит;
  • в качестве датчика для измерения уровня жидкости;
  • для запуска электродвигателей в однофазных сетях переменного тока.

С помощью этого радиоэлектронного элемента можно получать импульсы большой мощности, что используется, например, в фотовспышках, в системах зажигания карбюраторных двигателей.

Маркировка СМД (SMD) конденсаторов.

Размеры СМД конденсаторов невелики, поэтому маркировка их производится весьма лаконично. Рабочее напряжение нередко кодируется буквой(2-й и 3-й варианты на рисунке ниже) в соответствии с данными предоставленными в предидущем разделе. Номинальная емкость может кодироваться либо с помощью трехзначного цифрового кода(вариант 2 на рисунке), либо с использованием двухзначного буквенно-цифровой кода(вариант 1 на рисунке). При использовании последнего, на корпусе можно обнаружить таки две(а не одну букву) с одной цифрой(вариант 3 на рисунке).

Первая буква может является как кодом изготовителя(что не всегда интересно), так и указываеть на номинальное рабочее напряжение(более полезная информация), вторая — закодированным значением в пикоФарадах(мантиссой). Цифра — показатель степени(указывает сколько нулей необходимо добавить к мантиссе). Например EA3 может означать, что номинальное напряжение конденсатора 16в(E) а емкость — 1,0 *1000 = 1 нанофарада, BF5 соответсвенно, напряжение 6,3в(В), емкость — 1,6* 100000 = 0,1 микрофарад и.т.д.

Буква Мантисса.
A 1,0
B 1,1
C 1,2
D 1,3
E 1,5
F 1,6
G 1,8
H 2,0
J 2,2
K 2,4
L 2,7
M 3,0
N 3,3
P 3,6
Q 3,9
R 4,3
S 4,7
T 5,1
U 5,6
V 6,2
W 6,8
X 7,5
Y 8,2
Z 9,1
a 2,5
b 3,5
d 4,0
e 4,5
f 5,0
m 6,0
n 7,0
t 8,0

Читайте также:  Разбираемся в особенностях патронов для сверлильного станка

Особенности хранения

Танталовые конденсаторы способны сохранять рабочие характеристики в течение длительного времени. При соблюдении нужного режима (температура до +40°, относительная влажность 60%) конденсатор при длительном хранении теряет способность к пайке, сохраняя другие рабочие характеристики.

Общие рекомендации по продлению срока службы танталового конденсатора и повышению безопасности его эксплуатации:

  • Соблюдение требований техпроцессов;
  • Многоступенчатый контроль качества продукции;
  • Соблюдение условий хранения;
  • Выполнение требований к организации рабочего места для монтажа устройств на плату;
  • Соблюдение рекомендуемого температурного режима пайки;
  • Правильный выбор безопасных рабочих режимов;
  • Соблюдение требований по эксплуатации.

Цветовая кодировка керамических конденсаторов.

На корпусе конденсатора, слева — направо, или сверху — вниз наносятся цветные полоски. Как правило, номинал емкости оказывается закодирован первыми тремя полосками. Каждому цвету, в первых двух полосках,соответствует своя цифра: черный — цифра 0; коричневый — 1; красный — 2; оранжевый — 3; желтый — 4; зеленый — 5; голубой — 6; фиолетовый — 7; серый — 8; белый — 9. Таким образом, если например, первая полоска коричневая а вторая желтая, то это соответствует числу -14. Но это число не будет величиной номинальной емкости конденсатора, его еще необходимо умножить на множитель, закодированный третьей полоской.

В третьей полоске цвета имеют следующие значение: оранжевый — 1000; желтый — 10000; зеленый — 100000. Допустим, что цвет третьей полоски нашего конденсатора — желтый. Умножаем 14 на 10000, получаем емкость в пикофарадах -140000, иначе, 140 нанофарад или 0,14 микрофарад. Четвертая полоска обозначает допустимые отклонения от номинала емкости(точность), в процентах: белый — ± 10 %; черный — ± 20%. Пятая полоска — номинальное рабочее напряжение. Красный цвет — 250 Вольт, желтый — 400.

Свойства

Из описания понятно, что для постоянного тока конденсатор является непреодолимым барьером, за исключением случаев пробоя диэлектрика. В таких электрических цепях радиоэлемент используется для накопления и сохранения электричества на его электродах. Изменение напряжения происходит лишь в случаях изменений параметров тока в цепи. Эти изменения могут считывать другие элементы схемы и реагировать на них.

В цепях синусоидального тока конденсатор ведёт себя подобно катушке индуктивности. Он пропускает переменный ток, но отсекает постоянную составляющую, а значит, может служить отличным фильтром. Такие радиоэлектронные элементы применяются в цепях обратной связи, входят в схемы колебательных контуров и т. п.

Ещё одно свойство состоит в том, что переменную емкость можно использовать для сдвига фаз. Существуют специальные пусковые конденсаторы (рис.5), применяемые для запусков трёхфазных электромоторов в однофазных электросетях.

Рис. 5. Пусковой конденсатор с проводами

Цветовая кодировка электролитических конденсаторов.

Что касается малогабаритных электролитических конденсаторов, то их номинальная емкость кодируется с помощью двух полосок и одного цветового пятна. Первая и вторая полоска определяет число, а пятно — множитель. Цветовая кодировка первых двух полосок у электролитических конденсаторов полностью соответствует маркировке конденсаторов керамических. Необходимо учитывать, лишь то, что величина емкости у «электролитов» получается в микрофарадах, а не пикофарадах как у керамических конденсаторов. Цвета пятна, означающего множитель: черный — 1; коричневый — 10; красный — 100; серый — 0,01; белый — 0,1; Например, цвет первой полоски голубой( цифра 6), второй — оранжевый( цифра 3), при коричневом цвете пятна( множитель — 10). Это означает 63*10= 630 микрофарада. Если у электролитического конденсатора присутствует третья полоска, то она определяет его номинальное напряжение: белый цвет — 3 вольта; желтый — 6,3 вольт; черный — 10 вольт; зеленый — 16 вольт; голубой — 20 вольт; серый — 25 вольт; розовый — 35 вольт.

Плюсовой вывод в таких электролитических конденсаторах — более толстый, чем минусовой.

Поиск новых решений

На сегодняшний день танталовые конденсаторы являются самыми востребованными. Современные производители находятся в поисках новых методов повышения уровня прочности изделия, оптимизации его технических характеристик, а также существенного понижения цены и унификации производственного процесса.

С этой целью пытаются снизить стоимость на основе составляющих компонентов. Последующая роботизация всего процесса производства также способствует падению цены на изделие.

Важным вопросом считается и уменьшение корпуса устройства при сохранении высоких технических параметров. Уже проводятся эксперименты на новых типах корпусов в уменьшенном исполнении.

Читайте также:  Скарт разъем: распиновка и переходники на HDMI, S-Video и RCA

Советские бумажные конденсаторы.

Диэлектриком в бумажных конденсаторах служит тонкая, хорошо пропитанная изоляционным составом бумага,а проводящими электродами (обкладками) — тонкая металлическая фольга. Эти конденсаторы применялись во всех видах радиотехнической, электронной и измерительной аппаратуры. Они использовались в качестве развязывающих, разделительных, блокировочных и фильтрующих элементов в различных цепях с постоянным и переменным(низкочастотным)напряжением. Бумажные конденсаторы выпускались в разнообразном конструктивном оформлении, на различные номинальные емкости и напряжения. Наиболее широко использовались конденсаторы типов КБ (конденсаторы бумажные), КБГ(конденсаторы бумажные герметизированные), БМ(бумажные малогабаритные), БГМ(бумажные герметизированные малогабаритные).

Конденсаторы типа КБ.

Конденсаторы этого типа оформлены в цилиндрических бумажных корпусах различной длины и диаметра(в зависимости от емкости и напряжения) и имеют проволочные выводы. Они рассчитаны на работу в интервале температур от -40 до +60 и выпускались на номинальную емкость от 4700 пф до 0,5 мкф с допустимыми отклонениями ± 10 и ± 20% и рабочие напряжения 200, 400, и 600 в.

Сопротивление изоляции у этих конденсаторов в нормальных условиях (при температуре +20) составляет 500 — 2000Мом(большее сопротивление у конденсаторов с меньшей емкостью). При температуре +60 сопротивление изоляции уменьшается у них в несколько раз. Выпуск этих конденсаторов был прекращен более 30 лет назад.

Конденсаторы типа КБГ.

Конденсаторы этого типа выпускались на номинальную емкость от 470пф до 2мкф с допустимым отклонениями ± 5, ± 10, ± 20% и рабочие напряжения 200, 400, 600,1500 вольт. Они расcчитаны на работу в интервале температур от -60 до +70. Сопротивление изоляции не менее 10000 Мом для конденсаторов с емкостью до 0,2 мкф и не менее 2000 Мом * мкф для конденсаторов с большей емкостью.

По конструктивному оформлению конденсаторы типа КБГ разделяются на следующие четыре вида: КБГ-И( в цилиндрических керамических или стеклянных корпусах), КБГ-М (в цилиндрических металлических корпусах); КБГ-МП( в плоских металлических прямоугольных корпусах),КБГ-МН( в нормальных металлических корпусах).

Конденсаторы КБГ-И и КБГ-М выпускались на рабочее напряжения 200, 400, 600 вольт. Последние изготовлялись в двух вариантах: КБГ-М1, у которых один проволочный вывод изолирован от корпуса, а другой соединен с ним, и КБГ-М2 с двумя изолированными от корпуса проволочными выводами.

Конденсаторы КБГ-МП и КБГ-МН рассчитаны на те же рабочие напряжения и еще, кроме того, на напряжения 1000 и 1500 вольт. Они изготовлялись с одним, двумя или тремя изолированными от корпуса лепестковыми выводами и выводом, соединенном с корпусом.

Конденсаторы типа БМ.

Эти конденсаторы предназначались для использования «малогабаритной аппаратуре»(по тем временам, конечно) Они заключены в небольшие металлические корпуса цилиндрической формы и снабжены проволочными выводами.

Изготовлялись такие конденсаторы на номинальную емкость от 510 пикофарад, до 0,05 микрофарад, с допускаемым отклонением ± 10 и ± 20% и рабочие напряжения 150, 200 и 300 вольт.

На главную страницу В начало

Танталовые устройства

Современные танталовые устройства являются самостоятельным подвидом электролитического вида из алюминия. Основу конденсаторов составляет пентаоксид тантала.

Конденсаторы обладают небольшим показателем напряжения и применяются в случае необходимости использования прибора с большим показателем емкости, но в корпусе малого размера. У данного типа есть свои особенности:

  • небольшой размер;
  • показатель максимального рабочего напряжения составляет до 100 V;
  • повышенный уровень надежности при долгом употреблении;
  • низкий показатель утечки тока;
  • широкий спектр рабочих температур;
  • показатель емкости может колебаться от 47 nF до 1000 uF;
  • устройства обладают более низким уровнем индуктивности и применяются в высокочастотных конфигурациях.

Минус этого вида заключен в высокой чувствительности к повышению рабочего напряжения.

Следует отметить, что, в отличие от электролитического вида, линией на корпусе помечается плюсовой вывод.

Электрические характеристики алюминиевых ЭК

К основным характеристикам алюминиевого электролитического конденсатора относятся следующие параметры:

  • ёмкость;
  • допустимые отклонения от номинального значения ёмкости;
  • реактивное сопротивление;
  • конструкция;
  • назначение (переменный или постоянный ток);
  • размеры.

На основании прочитанной статьи можно составить представление, какие бывают конденсаторы. Электролитические накопители занимают свою нишу в радиоэлектронике и электротехнике. Простота конструкции и невысокая стоимость способствуют большой популярности этих радиокомпонентов.

Температурный коэффициент

Когда изменяется температура окружающей среды, емкость конденсатора также меняется. Чтобы отслеживать данный коэффициент, берется в расчет показатель ТКЕ. По формуле он представляет собой соотношение начальной емкости и изменения температуры. Первоначально отслеживаются нормальные условия работы компонента.

При значительном повышении температуры используются линейные уравнения, в которых задаются показатели рабочих условий функционирования конденсатора. Также указывается стартовая ёмкость в качестве ориентира. Показатель ТКЕ необходим для подготовки описания к элементам.

Показатель ТКЕ

Если взглянуть на спецификацию, прописываются все параметры. При подборе компонентов пользователи желают знать, как устройство реагирует на изменение температуры. Чаще всего речь идет о постоянном показателе, поэтому стоит рассматривать график с диапазоном рабочих температур.

Если говорить о твердотельных конденсаторах, это тот же электролитический конденсатор, однако в нем используется специальный токопроводящий полимер или полимеризованный органический полупроводник. В то время как в других конденсаторах используется обычный жидкий электролит.

Общая характеристика

Как уже говорилось, отличие между твердотельными и обычными конденсаторами состоит во внутренней «начинке» устройства. Так чем же они лучше?

1970012.jpg

Первое и самое существенное отличие кроется именно в том, что в твердотельных конденсаторах используется твердый полимерный электролит, а не жидкий. Это исключает возможность протекания или испарения электролита. Вторым существенным плюсом у твердотельных устройств стало их последовательное эквивалентное сопротивление, которое называют ESR. Снижение этого показателя привело к тому, что стало возможным использование менее емкостных конденсаторов, а также меньших размеров в тех же условиях. Еще одним существенным плюсом твердотельных конденсаторов стало то, что они менее чувствительны к перепадам температуры. Это преимущество также говорит о том, что продолжительность срока службы такого объекта будет больше примерно в шесть раз, а значит и объект, в котором он установлен, прослужит намного дольше.

Электролитические

В твердотельном электролитическом конденсаторе в качестве диэлектрика используется тонкий слой оксида металла. Образование данного слоя осуществляется посредством электрохимического способа. Протекание данного процесса осуществляется на обложке из этого же металла.

1970019.jpg

Вторая обложка у данного конденсатора может быть представлена в виде жидкого или сухого электролита. В обычных электролитических используется жидкий, а в твердотельных — сухой. Для создания металлического электрода в этом типе твердотельных конденсаторов используется такой материал, как тантал или алюминий.

Стоит отметить, что к группе электролитических принадлежат также и танталовые конденсаторы.

Асимметричные

Асимметричный конденсатор с твердотельным электролитом — это относительно недавнее изобретение, так как ранее использовались другие устройства. Первым и простейшим конденсатором из этой группы стал Т-образный. В этом объекте пластины располагались в одной плоскости. Последующее развитие асимметричных конденсаторов привело к появлению дискового типа. Состоял он из плоского кольца, а также расположенного внутри него диска. Последующее совершенствование асимметричных конденсаторов привело к еще большему упрощению конструкции, и были получены устройства с двумя электродами. Один из них был представлен в виде тонкого провода, а второй — тонкой пластиной или же тонкой полоской металла. Но стоит заметить, что использование именно этого типа конденсаторов затруднено в связи с применением высоковольтного оборудования.

1970024.jpg

Маркировка

Существует маркировка твердотельных конденсаторов, которая описывает их характеристики. Наличие данной маркировки поможет понять определенные свойства конденсатора:

  • Опираясь на маркировку устройства, можно точно определить рабочее напряжение для каждого конденсатора. Также стоит отметить, что данное значение должно превышать то напряжение, которое присутствует в цепи, использующей этот объект. Если не соблюсти это условие, то будут либо сбои в работе всей цепи, либо конденсатор просто взорвется.
  • 1 000 000 пФ (пикофарад) = 1 мкФ. Данная маркировка у многих конденсаторов одинакова. Это связано с тем, что практически у всех устройств емкость равна или же близка к этому значению, а потому может указываться как в пикофарадах, так и в микрофарадах.

1970028.jpg

Вздутие конденсатора

Несмотря на то что конденсаторы этого типа довольно устойчивы к поломкам, они все же не вечные, и их также приходится менять. Замена твердотельного конденсатора может понадобиться в нескольких случаях:

  • Причин поломки, то есть вздутия этого устройства, может быть довольно много, однако главной из них называют плохое качество самой детали.
  • К причинам вздутия можно также отнести выкипание или испарение электролита. Несмотря на то что здесь используется твердый электролит, такие неполадки все равно не исключается полностью, и при очень высоких температурах такое все же случается.

1970035.jpg

Важно отметить, что перегрев этого устройства может произойти как из-за воздействия внешней среды, так и из-за внутренней. К внутреннему воздействию можно отнести неверную установку. Другими словами, если перепутать полярность при монтаже этой детали, то при ее запуске она практически моментально нагревается и, скорее всего, взорвется. Кроме этих причин, возможен также сильный перегрев из-за несоблюдения правил эксплуатации. Это может быть неверный вольтаж, емкость или работа в слишком высокой температурной среде.

Как избежать вздутия и частой замены

Начать стоит с того, как же избежать вздутия твердотельного конденсатора.

  • Первое, что советуют — это использовать только качественные детали.
  • Второй совет, который может помочь избежать таких проблем — это не давать конденсатору перегреваться. Если температура достигает 45 градусов или больше, то необходимо срочное охлаждение, а еще лучше размещать эти устройства как можно дальше от источников тепла.
  • Так как чаще всего конденсаторы вздуваются в блоках питания компьютера, рекомендуют использовать стабилизаторы напряжения, защищающие сеть от резких скачков напряжения.

1970037.jpg

Если вздутие все же произошло, то требуется замена устройства. Главное правило ремонта — это подобрать конденсатор с такой же емкостью. Допускается отклонение данного параметра в большую сторону, но лишь немного. Отклонения в меньшую сторону недопустимы. Те же правила касаются и напряжения объекта. Также стоит добавить, что при замене электролитических конденсаторов на твердотельные можно использовать устройства и с меньшей емкостью. Это возможно из-за меньшего ESR, о котором говорилось ранее. Но перед этим все же стоит посоветоваться со специалистом. Сам же процесс замены заключается в удалении сгоревшей детали посредством пайки и припаивании нового.

1970038.jpg

Ремонт

Довольно часто приходится проводить профилактический ремонт конденсаторов. Допустим, при разборке компьютера был найден подозрительный конденсатор. Его необходимо проверить и при необходимости заменить. Для замены потребуется паяльник мощностью от 25 до 40 ВТ. Это приборы средней мощности. Их использование обосновано тем, что менее мощные паяльники не смогут отпаять конденсатор, а более мощные слишком большие, и ими неудобно проводить работы.

Лучше всего иметь под рукой паяльник с конической формой жала. Для осуществления ремонта старый конденсатор выпаивают, но делать это необходимо очень осторожно, так как платы, в которых они установлены, чаще всего многослойные — до 5 слоев. Повреждение хотя бы одного из них выведет из строя всю плату, и ремонту она уже не подлежит. После выпаивания старого устройства отверстия для установки пробиваются иглой, лучше всего медицинской, она более тонкая. Припаивание нового объекта лучше всего проводить, используя канифоль.

Полимерные твердотельные конденсаторы

Можно сказать, что все устройства этого типа являются полимерными, так как внутри этого устройства используется твердый полимер вместо жидкого электролита. Применение твердого материала в стандартных твердотельных конденсаторах дало такие преимущества:

  • при высоких частотах — низкое эквивалентное сопротивление;
  • высокое значение тока пульсации;
  • срок эксплуатации конденсатора значительно выше;
  • более стабильная работа при высоких температурных режимах.

Если говорить подробнее, то, к примеру, пониженное ESR — это меньшие затраты энергии, а значит, и меньший нагрев конденсатора при тех же нагрузках. Более высокая степень пульсации тока обеспечивает стабильную работу всей платы в целом. Естественно, что именно замена жидкого электролита на твердый и привела к тому, что срок службы значительно вырос.

Используемые источники:

  • story/markirovka_kondensatorov_smd_4710038
  • https://instanko.ru/elektroinstrument/markirovka-keramicheskih-kondensatorov-rasshifrovka-tablica.html
  • https://fb.ru/article/338252/chto-takoe-tverdotelnyie-kondensatoryi-markirovka-i-klassifikatsiya

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации