Андрей Смирнов
Время чтения: ~16 мин.
Просмотров: 10

Что такое терморезисторы, их конструкция, виды, технические параметры

Терморезистором называется полупроводниковый компонент с температурозависимым электрическим сопротивлением. Изобретенный в далеком 1930 году ученым Самюэлем Рубеном, по сей день данный компонент находит самое широкое применение в технике.

Изготавливают терморезисторы из различных материалов, температурный коэффициент сопротивления (ТКС) которых достаточно высок, — значительно превосходит металлические сплавы и чистые металлы, то есть именно из особых, специфичных полупроводников.

1460996200_1.jpg

Непосредственно основной резистивный элемент получают посредством порошковой металлургии, обрабатывая халькогениды, галогениды и оксиды определенных металлов, придавая им различные формы, например форму дисков или стержней различных размеров, больших шайб, средних трубок, тонких пластинок, маленьких бусинок, размерами от единиц микрон до десятков миллиметров.

1460996166_2.jpeg

По характеру корреляции сопротивления элемента и его температуры, разделяют терморезисторы на две большие группы — на позисторы и термисторы. Позисторы обладают положительным ТКС (по этой причине позисторы еще называют PTC-термисторами), а термисторы — отрицательным (их называют поэтому NTC-термисторами).

Термистор — температурно-зависимый резистор, изготавливается из полупроводникового материала, имеющего отрицательный температурный коэффициент и высокую чувствительность, позистор — температурно-зависимый резистор, имеющий положительный коэффициент. Так, с возрастанием температуры корпуса позистора растет и его сопротивление, а с ростом температуры термистора — его сопротивление соответственно уменьшается.

Материалами для терморезисторов сегодня служат: смеси поликристаллических оксидов переходных металлов, таких как кобальт, марганец, медь и никель, соединений AIIIBV-типа, а также легированных, стеклообразных полупроводников, таких как кремний и германий, и некоторых других веществ. Примечательны позисторы из твердых растворов на базе титаната бария.

Терморезисторы в целом можно классифицировать на:

  • Низкотемпературного класса (рабочая температура ниже 170 К);

  • Среднетемпературного класса (рабочая температура от 170 К до 510 К);

  • Высокотемпературного класса (рабочая температура от 570 К и выше);

  • Отдельный класс высокотемпературных (рабочая температура от 900 К до 1300 К).

Все эти элементы, как термисторы, так и позисторы, могут работать при разнообразных климатических внешних условиях и при существенных физических внешних и токовых нагрузках. Однако в жестких термоцикличных режимах, со временем меняются их исходные термоэлектрические характеристики, как то номинальное сопротивление при комнатной температуре и температурный коэффициент сопротивления.

Встречаются и комбинированные компоненты, например терморезисторы с косвенным нагревом. В корпусах таких приборов размещены сам и терморезистор и гальванически изолированный нагревательный элемент, задающий исходную температуру терморезистора, и, соответствующим образом, его начальное электрическое сопротивление.

Данные приборы применяются в качестве переменных резисторов, управляемых напряжением, приложенным к нагревательному элементу терморезистора.

1460996198_3.png

В зависимости от того, как выбрана рабочая точка на ВАХ конкретного компонента, определяется и режим работы терморезистора в схеме. А сама ВАХ связана с конструктивными особенностями и с приложенной к корпусу компонента температурой.

Для контроля за вариациями температур и с целью компенсации динамически меняющихся параметров, таких как протекающий ток и приложенное напряжение в электрических цепях, изменяющихся вслед за изменениями температурных условий, применяют терморезисторы с выставлением рабочей точки на линейном участке ВАХ.

Но рабочая точка выставляется традиционно на спадающем участке ВАХ (NTC-термисторы), если термистор применяется, например, в качестве пускового устройства, реле времени, в системе отслеживания и измерения интенсивности СВЧ-излучения, в системах пожарной сигнализации, термического контроля, в установках управления расходом сыпучих веществ и жидкостей.

Наиболее популярны сегодня среднетемпературные термисторы и позисторы с ТКС от -2,4 до -8,4 % на 1 К. Они работают в широком диапазоне сопротивлений от единиц Ом до единиц мегаом.

Встречаются позисторы с относительно малым ТКС от 0,5% до 0,7% на 1 К, изготовленные на базе кремния. Их сопротивление изменяется практически линейно. Подобные позисторы широко применяются в системах температурной стабилизации и в системах активного охлаждения силовых полупроводниковых ключей в разнообразных современных электронных приборах, особенно — в мощных. Эти компоненты легко вписываются в схемы и не занимают много места на платах.

Типичный позистор имеет форму керамического диска, иногда в одном корпусе устанавливаются последовательно несколько элементов, но чаще — в одиночном исполнении в защитном покрытии из эмали. Позисторы часто применяют в качестве предохранителей для защиты электрических схем от перегрузок по напряжению и току, а также в качестве термодатчиков и автостабилизирующих элементов, в силу их неприхотливости и физической устойчивости.

Термисторы широко применяются в многочисленных областях электроники, особенно там, где важен точный контроль за температурным процессом. Это актуально для аппаратуры передачи данных, компьютерной техники, высокопроизводительных ЦПУ и промышленного оборудования высокой точности.

Один из простейших и весьма популярных примеров применения термистора – эффективное ограничение пускового тока. В момент подачи напряжения к блоку питания от сети, происходит чрезвычайно резкий заряд конденсатора значительной емкости, и в первичной цепи протекает большой зарядный ток, способный сжечь диодный мост.

Этот ток здесь и ограничивается термистором, то есть данный компонент схемы изменяет свое сопротивление в зависимости от проходящего по нему тока, поскольку в соответствии с законом Ома происходит его нагрев. Термистор после этого восстанавливает свое исходное сопротивление, через несколько минут, как только остынет до комнатной температуры.

При ремонте бытовой техники приходится сталкиваться с большим разнообразием деталей и компонентов. Часто новички не знают, что такое терморезистор и какими они бывают. Это полупроводниковые компоненты, сопротивление которых изменяется под воздействием температуры. Благодаря этим свойствам они нашли широкий диапазон применений. Начиная от термометров, заканчивая ограничителями пускового тока. В этой статье мы ответим на все интересующие вас вопросы простыми словами.

Содержание:

Устройство и виды

Терморезистор – это полупроводниковый прибор, сопротивление которого зависит от его температуры. В зависимости от типа элемента сопротивление может повышаться или падать при нагреве. Различают два вида терморезисторов:

  • NTC (Negative Temperature Coefficient) – с отрицательным температурным коэффициентом сопротивления (ТКС). Часто их называют «Термисторы».
  • PTC (Positive Temperature Coefficient) – с положительным ТКС. Их также называют «Позисторы».

Важно! Температурный коэффициент электрического сопротивления – это зависимость сопротивления от температуры. Описывает, на сколько Ом или процентов от номинальной величины изменяется сопротивление элемента при повышении его температуры на 1 градус Цельсия. Например, у обычных резисторов положительный ТКС (при нагреве сопротивление проводников повышается).

Терморезисторы бывают низкотемпературными (до 170К), среднетемпературными (170-510К) и высокотемпературными (900-1300К). Корпус элемента может быть выполнен из пластика, стекла, металла или керамики.

Условное графическое обозначение терморезисторов на схеме напоминает обычные резисторы, а отличием является лишь то, что они перечеркнуты полосой и рядом указывается буква t.

Кстати, так обозначаются любые резисторы, сопротивление которых изменяется под воздействием окружающей среды, а род воздействующих величин и указывается буквой, t – температура.

Основные характеристики:

  • Номинальное сопротивление при 25 градусах Цельсия.
  • Максимальный ток или мощность рассеяния.
  • Интервал рабочих температур.
  • ТКС.

Интересный факт: Терморезистор изобретен в 1930 году ученым Самюэлем Рубеном.

Давайте подробнее рассмотрим, как устроен и для чего нужен каждый из них.

NTC

Основные сведения

Сопротивление NTC-терморезисторов уменьшается при нагреве, их ТКС отрицательный. Зависимость сопротивления от температуры изображена на графике ниже.

Здесь вы можете убедиться, что при нагреве сопротивление NTC-терморезистора уменьшается.

Такие термисторы изготавливают из полупроводников. Принцип действия заключается в том, что с ростом температуры увеличивается концентрация носителей зарядов, электроны переходят в зону проводимости. Кроме полупроводников используются оксиды переходных металлов.

Обратите внимание на такой параметр как бета-коэффициент. Учитывается при использовании терморезистора для измерения температуры, для усреднения графика сопротивления от температуры и проведения расчетов с помощью микроконтроллеров. Бета-уравнение для приближения кривой изменения сопротивления термистора вы видите ниже.

Интересно: в большинстве случаев термисторы используют в диапазоне температур 25-200 градусов Цельсия. Соответственно могут использоваться для измерений в этих диапазонах, в то время как термопары работают и при 600 градусах Цельсия.

Где используется

Терморезисторы с отрицательным ТКС часто используют для ограничения пусковых токов электродвигателей, пусковых реле, для защиты от перегрева литиевых аккумуляторов и в блоках питания для уменьшения зарядных токов входного фильтра (емкостного).

На схеме выше приведен пример использования термистора в блоке питания. Такое применение называется прямым нагревом (когда элемент сам разогревается при протекании тока через него). На плате блока питания NTC-резистор выглядит следующим образом.

На рисунке ниже вы видите, как выглядит NTC-терморезистор. Он может отличаться размерам, формой, а реже и цветом, самый распространенный – это зелёный, синий и черный.

Ограничение пускового тока электродвигателей с помощью NTC-термистора получило широкое распространение в бытовой технике благодаря простоте реализации. Известно, что при пуске двигателя он может потреблять ток в разы и десятки раз превышающий его номинальное потребление, особенно если двигатель пускается не в холостую, а под нагрузкой.

Принцип работы такой схемы:

Когда термистор холодный его сопротивление велико, мы включаем двигатель и ток в цепи ограничивается активным сопротивлением термистора. Постепенно происходит разогрев этого элемента и его сопротивление падает, а двигатель выходит на рабочий режим. Термистор подбирается таким образом, чтобы в горячем состоянии сопротивление было приближено к нулю. На фото ниже вы видите сгоревший терморезистор на плате мясорубки Zelmer, где и используется такое решение.

Недостаток этой конструкции состоит в том, что при повторном пуске, когда термистор еще не остыл – ограничения тока не происходит.

Есть не совсем привычное любительское применение терморезистора для защиты ламп накаливания. На схеме ниже изображен вариант ограничения всплеска тока при включении таких лампочек.

Если терморезистор используется для измерения температуры – такой режим работы называют косвенным нагревом, т.е. он нагревается от внешнего источника тепла.

Интересно: у терморезисторов нет полярности, так что их можно использовать как в цепях постоянного, так и переменного тока не опасаясь переполюсовки.

Маркировка

Терморезисторы могут маркироваться как буквенным способом, так и содержать цветовую маркировку в виде кругов, колец или полос. При этом различают множество способов буквенной маркировки – это зависит от производителя и типа конкретного элемента. Один из вариантов:

На практике, если он применяется для ограничения пускового тока чаще всего встречаются дисковые термисторы, которые маркируются так:

5D-20

Где первая цифра обозначает сопротивление при 25 градусах Цельсия – 5 Ом, а «20» — диаметр, чем он больше – тем большую мощность он может рассеять. Пример такого вы видите на рисунке ниже:

Для расшифровки цветовой маркировки можно воспользоваться таблицей, изображенной ниже.

Из-за обилия вариантов маркировки можно ошибиться в расшифровке, поэтому для точности расшифровки лучше искать техническую документацию к конкретному компоненту на сайте производителя.

PTC

Основные сведения

Позисторы, как было сказано, имеют положительный ТКС, то есть их сопротивление повышается при нагреве. Их изготавливают на основе титаната бария (BaTiO3). У позистора такой график температуры и сопротивления:

Кроме этого нужно обратить внимание на его вольтамперную характеристику:

Рабочий режим зависит от выбора рабочей точки позистора на ВАХ, например:

  • Линейный участок используется для измерения температуры;
  • Нисходящий участок используется в пусковых реле, реле времени, измерения мощности ЭМИ на СВЧ, противопожарной сигнализации и прочего.

На видео ниже рассказывается, что такое позисторы:

Где применяется

Сфера применения позисторов достаточно широка. В основном они используются в схемах защиты оборудования и устройств от перегрева или перегрузки, реже для измерения температуры, а также в качестве автостабилизирующих нагревательного элемента. Кратко перечислим примеры использования:

  1. Защиты электродвигателей. Устанавливаются в лобовой части каждой обмотки электродвигателя (для односкоростных трёхфазных 3, для двухскоростных 6 и т.д.), PTC-терморезистор предотвращает перегорание обмотки в случае заклинивания ротора или при выходе из строя системы принудительного охлаждения. Как работает эта схема? Позистор используется в качестве датчика, подключенного к управляющему устройству с исполнительными реле, пускателями и контакторами. В случае нештатной ситуации его сопротивление повышается и этот сигнал передаётся на управляющий орган, двигатель отключается.
  2. Защиты обмоток трансформатора от перегрева и (или) перегрузки, тогда позистор устанавливается последовательно с первичной обмоткой.
  3. Система размагничивания кинескопов ЭЛТ-телевизоров и мониторов. Кстати эта деталь часто выходит из строя и с этим случаем приходится сталкиваться при ремонте, характерен при этом выход из строя предохранителя.
  4. Нагревательный элемент в клеевых пистолетах. В автомобилях для прогрева впускного тракта, на пример на фото ниже изображен подогреватель канала ХХ карбюратора Pierburg.

Терморезисторы – это группа устройств, способных преобразовать температуру в электрический сигнал, который считывают посредством измерения падения напряжения или силы тока в цепи, где он установлен. Или же они сами по себе могут являться регулирующим органом, если это позволяют сделать его параметры. Простота и доступность этих устройств позволяет их широко использовать как для профессионального конструирования приборов, так и для радиолюбительской практики.

Напоследок рекомендуем просмотреть видео, на котором подробно рассказывается, что такое терморезистор, как он работает и где применяется:

Наверняка вы не знаете:

—>

Полупроводниковые резисторы, сопротивление которых зависит от температуры называются терморезисторы. Они имеют свойство значительного температурного коэффициента сопротивления, величина которого больше, чем у металлов во много раз. Они широко применяются в электротехнике.

На электрических схемах терморезисторы обозначаются:

Termorezistory oboznachenie 1

Устройство и работа

Они имеют простую конструкцию, выпускаются разных размеров и формы.

Termorezistory vidy

В полупроводниках есть свободные носители заряда двух видов: электроны и дырки. При неизменной температуре эти носители произвольно образуются и исчезают. Среднее количество свободных носителей находится в динамическом равновесии, то есть неизменно.

При изменении температуры равновесие нарушается. Если температура повышается, то число носителей заряда также увеличивается, а при снижении температуры концентрация носителей уменьшается. На удельное сопротивление полупроводника оказывает влияние температура.

Termorezistory grafik

Если температура подходит к абсолютному нулю, то полупроводник имеет свойство диэлектрика. При сильном нагревании он идеально проводит ток. Основной особенностью терморезистора является то, что его сопротивление наиболее заметно зависит от температуры в обычном интервале температур (-50 +100 градусов).

Популярные терморезисторы производятся в виде стержня из полупроводника, который покрыт эмалью. К нему подведены электроды и колпачки для контакта. Такие резисторы применяются в сухих местах.

Некоторые терморезисторы располагают в металлическом герметичном корпусе. Поэтому они могут использоваться во влажных местах с агрессивной внешней средой.

Герметичность корпуса создается при помощи олова и стекла. Стержни из полупроводника обернуты металлизированной фольгой. Для подключения тока применяется проволока из никеля. Величина номинального сопротивления составляет 1-200 кОм, температура работы -100 +129 градусов.

Принцип действия терморезистора основан на свойстве изменения сопротивления от температуры. Для изготовления используются чистые металлы: медь и платина.

Основные параметры
  • ТКС – термический коэффициент сопротивления, равен изменению сопротивления участка цепи при изменении температуры на 1 градус. Если ТКС положительный, то терморезисторы называют позисторами (РТС-термисторы). А если ТКС отрицательный, то термисторами (NТС-термисторы). У позисторов при повышении температуры повышается и сопротивление, а у термисторов все происходит наоборот.
  • Номинальное сопротивление – это величина сопротивления при 0 градусах.
  • Диапазон работы. Резисторы делят на низкотемпературные (менее 170К), среднетемпературные (от 170 до 510 К), высокотемпературные (более 570К).
  • Мощность рассеяния. Это величина мощности, в пределах которой терморезистор во время работы обеспечивает сохранение заданных параметров по техническим условиям.

Виды и особенности терморезисторов

Все датчики температуры на производстве работают по принципу преобразования температуры в сигнал электрического тока, который можно передавать с большой скоростью на дальние расстояния. Любые величины можно преобразовать в электрические сигналы, переведя их в цифровой код. Они передаются с высокой точностью, и обрабатываются вычислительной техникой.

Металлические терморезисторы

Материалом для терморезисторов можно использовать далеко не любые проводники тока, так как к терморезисторам предъявляются некоторые требования. Материал для их изготовления должен иметь высокий ТКС, а сопротивление должно зависеть от температуры по линейному графику в большом интервале температур.

Также проводник из металла должен обладать инертностью к агрессивным действиям внешней среды и качественно воспроизводить характеристики, что дает возможность менять датчики без особых настроек и измерительных приборов.

Для таких требований хорошо подходят медь и платина, не считая их высокой стоимости. Терморезисторы на их основе называют платиновыми и медными. ТСП (платиновые) термосопротивления работают при температурах -260 — 1100 градусов. Если температура в пределах от 0 до 650 градусов, то такие датчики применяют в качестве образцов и эталонов, так как в этом интервале нестабильность составляет не более 0,001 градусов.

Из недостатков платиновых терморезисторов можно назвать нелинейность преобразования и высокую стоимость. Поэтому точные замеры параметров возможны только в рабочем диапазоне.

Практически широко применяются недорогие медные образцы терморезисторов ТСМ, у которых линейность зависимости сопротивления от температуры намного выше. Их недостатком является малое удельное сопротивление и неустойчивость к повышенным температурам, быстрая окисляемость. В связи с этим термосопротивления на основе меди имеют ограниченное использование, не более 180 градусов.

Для монтажа платиновых и медных датчиков применяют 2-проводную линию при расстоянии до прибора до 200 метров. Если удаление больше, то применяют трехжильный кабель, в котором третий проводник служит для компенсирования сопротивления проводов.

Из недостатков платиновых и медных терморезисторов можно отметить их малую скорость работы. Их тепловая инерция достигает нескольких минут. Существуют терморезисторы с малой инерционностью, время срабатывания которых не выше нескольких десятых секунды. Это достигается небольшими размерами датчиков. Такие термосопротивления производят из микропровода в стеклянной оболочке. Эти датчики имеют небольшую инерцию, герметичны и обладают высокой стабильностью. При небольших размерах они обладают сопротивлением в несколько кОм.

Полупроводниковые

Такие сопротивления имеют название термисторов. Если их сравнить с платиновыми и медными образцами, то они обладают повышенной чувствительностью и ТКС отрицательного значения. Это значит, что при возрастании температуры сопротивление резистора снижается. У термисторов ТКС намного больше, чем у платиновых и медных датчиков. При небольших размерах их сопротивление доходит до 1 мегома, что не позволяет оказывать влияние на измерение сопротивлению проводников.

Для осуществления замеров температуры большую популярность приобрели терморезисторы на полупроводниках КМТ, состоящих из оксидов кобальта и марганца, а также термосопротивления ММТ на основе оксидов меди и марганца. Зависимость сопротивления от температуры на графике имеет хорошую линейность в интервале температур -100 +200 градусов. Надежность терморезисторов на полупроводниках довольно высока, свойства имеют достаточную стабильность в течение длительного времени.

Основным их недостатком является такой факт, что при массовом изготовлении таких терморезисторов не получается обеспечить необходимую точность их характеристик. Поэтому один отдельно взятый резистор будет отличаться от другого образца, подобно транзисторам, которые из одной партии могут иметь различные коэффициенты усиления, трудно найти два одинаковых образца. Этот отрицательный момент создает необходимость дополнительной настройки аппаратуры при замене терморезистора.

Для подключения термисторов обычно применяют мостовую схему, в которой мост уравновешивается потенциометром. Во время изменения сопротивления резистора от действия температуры мост можно привести в равновесие путем регулировки потенциометра.

Такой метод ручной настройки используется в учебных лабораториях для демонстрации работы. Регулятор потенциометра оснащен шкалой, которая имеет градуировку в градусах. На практике в сложных схемах измерения эта регулировка происходит в автоматическом режиме.

Применение терморезисторов

В работе термодатчиков существует два режима действия. При первом режиме температура датчика определяется лишь температурой внешней среды. Протекающий по резистору ток маленький и не способен его нагреть.

Termorezistor NTC

При 2-м режиме термистор нагревается протекающим током, а его температура определяется условиями отдачи тепла, например, скоростью обдува, плотностью газа и т.д.

Termorezistor PTC

На схемах термисторы (NТС) и резисторы (РТС) имеют соответственно отрицательный и положительный коэффициенты сопротивления, и обозначаются следующим образом:

Termorezistory oboznachenie 2

Применение термисторов
  • Измерение температуры.
  • Бытовая техника: морозильники, фены, холодильники и т.д.
  • Автомобильная электроника: измерение охлаждения антифриза, масла, контроль выхлопных газов, системы торможения, температура в салоне.
  • Кондиционеры: распределение тепла, контроль температуры в помещении.
  • Отопительные котлы, теплые полы, печи.
  • Блокировка дверей в устройствах нагревания.
  • Электронная промышленность: стабилизация температуры лазерных фотоэлементов и диодов, а также медных обмоток катушек.
  • В мобильных телефонах для компенсации нагрева.
  • Ограничение тока запуска двигателей, ламп освещения, импульсных блоков питания.
  • Контроль наполнения жидкостей.
Применение позисторов
  • Защита от короткого замыкания в двигателях.
  • Защита от оплавления при токовой перегрузке.
  • Для задержки времени включения импульсных блоков питания.
  • Мониторы компьютеров и кинескопы телевизоров для размагничивания и предотвращения нарушения цвета.
  • В пускателях компрессоров холодильников.
  • Тепловая блокировка трансформаторов и двигателей.
  • Приборы измерения.
  • Автоматика управления техникой.
  • Устройства памяти информации.
  • В качестве нагревателей карбюраторов.
  • В бытовых устройствах: закрывание дверки стиральной машины, в фенах и т.д.
Похожие темы:
  • Элементы Пельтье. Принцип действия и применения. Обратный эффект
  • Термостаты. Виды и особенности. Принцип действия и применение
  • Датчики температуры. Виды и принцип действия, Как выбрать
  • Терморегуляторы
  • Тепловые реле. Виды и устройство. Особенности и принцип действия

РубрикаОБОРУДОВАНИЕИспользуемые источники:

  • http://electricalschool.info/electronica/1707-chto-takoe-termistor-i-pozistor.html
  • https://samelectrik.ru/chto-takoe-termorezistory.html
  • https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/termorezistory/

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации