Иногда возникает потребность в устройстве, которое бы могло функционировать в периодическом режиме, то есть через какое-то время включаться, работать какое-то время и снова выключаться. Примерно как холодильник, только периодичность у холодильника зависит от температуры, а нам нужно самим задавать необходимые временные интервалы.
Рассмотрим схему электронного таймера, в котором цикличность работы и «отдыха», можно задавать раздельно. Время задается переменными резисторами, в диапазоне от 90 секунд до 3 часов, раздельно, для каждого режима. Величины задаваемых интервалов полностью зависят от параметров RC-цепей, с переменными резисторами в «R»-составляющих. В связи с этим, данный электронный таймер не обладает сверх большой точностью.
Схема состоит из таймерного узла на двоичном счетчике К561ИЕ16 (аналог 4020), отличающегося от «типового» тем, что у него имеется два регулируемых мультивибратора. Настройкой частоты одного, задают продолжительность включенного состояния, а настройкой частоты другого, продолжительность выключенного состояния. Мультивибраторы переключаются транзисторно-диодной схемой в зависимости от логического уровня на старшем выходе счетчика. Этот же выход счетчика служит для управления нагрузкой.
В исходном состоянии (после включения питания выключателем SB1) счетчик DD2 устанавливается в нулевое положение скачком зарядного тока конденсатора C2. На его выходе (вывод 3) будет логический ноль. Транзистор VT2 открывается, транзистор VT3 тоже открывается и реле K1 замыкает свои контакты, выход схемы подключается в разрыв цепи питания того электроприбора, которым нужно управлять. То есть, практически, параллельно выключателю этого электроприбора.
В то же время, ноль с вывода 3 DD2 проходит на вывод 9 DD1.4 и на базу VT1. При этом VT1 закрыт, на его коллекторе высокий уровень напряжения, который приходит на вывод 6 DD1.2. Отсюда получается что, мультивибратор, собранный на элементах DD1.3-DD1.4 работает, импульсы с его выхода проходят через диод VD1 на счетный вход DD2. А мультивибратор на элементах DD1.1-DD1.2 не работает, на его выходе ноль. Но это не влияет на проход импульсов на счетчик от второго мультивибратора, так как диод VD2 оказывается закрытым и на вход счетчика не влияет.
Таким образом, начинается период включенного состояния электроприбора. Продолжаться это будет до тех пор, пока счетчик DD2 не доберется до 8192-го импульса. То есть, пока не появится единица на его выводе 3. Сколько на это уйдет времени, — зависит от сопротивления R7.
При появлении единицы на выводе 3 DD2 интервал включенного состояния электроприбора завершается, и начинается пауза. Транзисторы VT2-VT3 закрываются и реле K1 выключает электроприбор. А транзистор VT1 открывается. На вывод 9 DD1.4 проходит единица с выхода DD2, поэтому мультивибратор DD1.3- DD1.4 выключается. На коллекторе VT1 напряжение падает до нулевого уровня. Это соответствует напряжению на выводе 6 DD1.2. Поэтому мультивибратор DD1.1-DD1.2 включается. Импульсы с его выхода через диод VD2 поступают на вход «C» счетчика DD2. С этого момента и начинается отсчет интервала паузы. Светодиод HL1 индицирует включенное состояние реле K1.
В качестве источника питания годится любой сетевой адаптер с выходным номинальным напряжением 9-15В и током не ниже 150 мА.
Используя реле SC1240 можно коммутировать нагрузку при сетевом переменном напряжении 220В мощностью не более 2 кВт. Если же подобного не оказалось в наличии, можно использовать и отечественное реле, однако стоит отдавать предпочтение тем реле, которые в пластмассовом корпусе, так как аналогичное реле в металлическом корпусе не сможет безопасно работать на переменном напряжении 220В. Кроме того, желательно использовать специализированные реле, контакты которых и конструкция первично рассчитаны на коммутацию сетевого переменного напряжения.
Вместо реле можно использовать какую-нибудь оптотиристорную или отпосимисторную схему. В этом случае транзистор VT3 и, соответственно, реле K1 из схемы исключаются. А светодиод оптопары подключают вместо резистора R13. Сопротивление R10 в этом случае нужно подобрать соответственно тому, какой ток должен протекать через светодиод оптопары.
Преимущество реле в том, что это фактически, обычный механический выключатель, то есть, прибор линейный как кусок проволоки, и не вносящий никаких искажений и дополнений (вроде выбросов на каждом полупериоде) в синусоиду переменного напряжения от сети. Поэтому электроприборы с электронными блоками все же лучше питать через реле. А недостаток реле очевиден, — механические контакты, искрение, подгорание, в общем, механика, которая сама по себе не так надежна как тиристор или симистор. Поэтому, если управлять нужно мощным ТЭНом, или каким-то другим электроприбором без встроенной электроники, то лучше использовать все же оптосимистор.
Микросхему К561ЛЕ5 можно заменить импортным аналогом 4001, либо использовать микросхему К561ЛА7 (импортный аналог 4011). В этом случае (ЛА7 вместо ЛЕ5) нужно диоды VD1 и VD2 перевернуть и резистор R3 отключить от минуса и подключить к плюсу питания. Теперь назначение R7 и R2 будет противоположным. Счетчик К561ИЕ16 можно заменить импортным аналогом 4020. Диоды КД522 заменимы на КД521, 1N4148. Транзисторы КТ315 и КТ361 можно заменить соответственно на КТ3102 и КТ3107, а так же, КТ503 и КТ502. Светодиод — любой.
Резисторы R2 и R7 любые, но желательно с линейным законом изменения сопротивления. Налаживание сводится к градуировки шкал вокруг ручек переменных резисторов. При желании можно сделать другие диапазоны регулировки интервалов, изменив сопротивления R1 и R5 емкости C1 и C3.
скачать архив
Таймер предназначен для циклического включения и выключения исполнительного устройства (ИУ) с заданными временными интервалами, которые оперативно можно изменить в пределах от 10 до 80 минут кнопками S1-S3. Дискретность установок равна 10 минут. Стартовые преустановки времени на включение и выключение нагрузки равны по 30 минут. Таймер снабжен индикацией времени в виде линейки светодиодов (8 светодиодов HL1-HL8), каждый светодиод соответствует 10 минут временного интервала. На светодиодах HL9 и HL10 реализована индикация включенного или выключеного состояния ИУ. Возможно Вы скажете что не разумно исспользовать два диода, но поверьте, в данном случае так удобнее. Индикация работает следующим образом: к примеру, заданное время работы исполнительного устройства 40 минут, значит на линейке будут светиться светодиоды HL1-HL4. По истечению 10 минут один светодиод тухнет, еще 10 минут — тухнет еще один светодиод и т.д. пока на пройдет заданное время. Далее зажжется индикатор HL10, исполниельное устройство отключится, а на индикатоорах HL1-HL8 отбразится заданное время отключенного состояния. Как уже было сказано ранее, интервалы времени можно оперативно изменить с помощью кнопок S1-S3. Делается это так: нажимаем кнопку «SET», начинает моргать индикаторы HL9, при повторном нажатии кнопки «SET» — моргает HL10, т.е. таким образом выбираем тот режим в котором необходимо произвести изменения. Изменения необходимо производить пока индикатор моргает. Если никакая кнопка не нажимается, то по истечении примерно 14 секунд, устройство выходит из режима предустановок, а на линейном индикаторе будет опять отображаться время которое осталось до перехода ИУ в противоположное состояние.ДеталиМикросхема — микроконтроллер фирмы Atmel Attiny2313. Все светодиоды — зелёного цвета свечения — АЛ307ВМ, АЛ307ГМ или аналогичные импортные. Электромагнитное реле — любое маламощное, с питанием обмотки 12 вольт, например LKS1aF-12V, G5PA-1.
period_gen_v1.1.rar [1,27 Kb] (cкачиваний: 211) | Прошивка, первая версия |
period_gen_v1.1a.rar [3,45 Kb] (cкачиваний: 116) | обновленная и улучшенная прошивка для таймера (версия 1.1а): параметры интервалов сохраняются в EEPROM, так что теперь, при подключении питания их не нужно снова выставлять. Изменилась частота моргания светодиодов при настройке интервалов в два раза — теперь, на мой взгляд, это выглядит немного приятней. |
period_gen_v1.1b.rar [3,63 Kb] (cкачиваний: 103) | в этой версии (v1.1b), время включенного состояния задается в десятках секунд, а время выключенного состояния — в десятках минут (т.е. включенное состояние от 10 до 80 секунд, а выключенное от 10 до 80 минут). |
periodgenv1.1c.rar [99,27 Kb] (cкачиваний: 101) | Version : 1.1c — Интервалы включенного состояния задаются в часах, а время выключенного состояния — в десятках минут. Параметры предустановок сохраняются в EEPROM. |
Обращаю внимание, что для новых версий изменилась установка фьюзов:
Печатная плата в форматеP-CAD
Активизировать и отключать бытовую технику можно без присутствия и участия пользователя. Большинство выпускаемых в наши дни моделей оснащено реле времени для автоматического запуска/остановки.
Что делать, если точно так же хочется управлять устаревшим оборудованием? Запастись терпением, нашими советами и сделать реле времени своими руками – поверьте, этой самоделке найдется применение в хозяйстве.
Мы готовы помочь вам осуществить интересную задумку и попробовать свои силы на пути самостоятельного электротехника. Для вас мы нашли и систематизировали все ценные сведения о вариантах и способах изготовления реле. Использование представленной информации гарантирует простоту сборки и отличную работу прибора.
В предложенной к изучению статье подробно разобраны опробованные на практике самодельные варианты устройства. Сведения опираются на опыт увлеченных электротехникой мастеров и требования нормативов.
Сфера применения реле времени
Человек всегда стремился облегчить себе жизнь, внедряя в обиход разные приспособления. С появлением техники на базе электродвигателя встал вопрос об оснащении ее таймером, который управлял бы этим оборудованием автоматически.
Включил на заданное время – и можно идти заниматься другими делами. Агрегат по истечении установленного периода сам отключится. Вот для такой автоматизации и потребовалось реле с функцией автотаймера.
Классический пример рассматриваемого устройства – это в реле в старой стиральной машинке советского образца. На ее корпусе имелась ручка с несколькими делениями. Выставил нужный режим, и барабан крутится в течение 5–10 минут, пока часики внутри не дойдут до нуля.
Электромагнитное реле времени небольшое по габаритам, потребляет мало электроэнергии, не имеет ломающихся подвижных частей и долговечно
Сегодня реле времени устанавливают в различную технику:
- микроволновки, печи и иную бытовую технику;
- вытяжные вентиляторы;
- системы автополива;
- автоматику управления освещением.
В большинстве случаев прибор делают на основе микроконтроллера, который одновременно и управляет всеми остальными режимами работы автоматизированной техники. Производителю так дешевле. Не надо тратиться на несколько отдельных устройств, отвечающих за что-то одно.
По типу элемента на выходе реле времени классифицируют на три вида:
- релейные – нагрузка подключается через «сухой контакт»;
- симисторные;
- тиристорные.
Наиболее надежен и устойчив к всплескам в сети первый вариант. Устройство с коммутирующим тиристором на выходе следует брать, только если подключаемая нагрузка нечувствительна к форме питающего напряжения.
Чтобы самостоятельно изготовить реле времени, также можно воспользоваться микроконтроллером. Однако самоделки в основном делаются для простых вещей и условий работы. Дорогой программируемый контроллер в такой ситуации – лишняя трата денег.
Есть гораздо более простые и дешевые в исполнении схемы на основе транзисторов и конденсаторов. Причем вариантов существует несколько, выбрать для своих конкретных нужд есть из чего.
Схемы различных самоделок
Все предлагаемые варианты изготовления своими руками реле времени построены на принципе запуска установленной выдержки. Сначала запускается таймер с заданным временным интервалом и обратным отсчетом.
Подключенное к нему внешнее устройство начинает работать – включается электродвигатель или свет. А затем, по достижении нуля, реле выдает сигнал на отключение этой нагрузки или перекрывает ток.
Вариант #1: самый простой на транзисторах
Схемы на базе транзисторного исполнения – наиболее легкие в реализации. Простейшая из них включает в себя всего восемь элементов. Для их соединения даже не потребуется плата, все можно спаять без нее. Подобное реле часто делают, чтобы подключить через него освещение. Нажал кнопку – и свет горит в течение пары минут, а потом сам отключается.
Для питания этой схемы требуются батарейки на 9 или аккумуляторы на 12 Вольт, также такое реле можно запитать от переменных 220 В посредством преобразователя на постоянные 12 В (+)
Чтобы собрать это самодельное реле времени, потребуется:
- пара резисторов (100 Ом и 2,2 мОм);
- биполярный транзистор КТ937А (либо аналог);
- реле переключения нагрузки;
- переменный резистор на 820 Ом (для регулировки временного интервала);
- конденсатор на 3300 мкФ и 25 В;
- выпрямительный диод КД105Б;
- переключатель для запуска отсчета.
Задержка времени в этом реле-таймере происходит за счет зарядки конденсатора до уровня питания ключа транзистора. Пока C1 заряжается до 9–12 В ключ в VT1 остается открытым. Внешняя нагрузка запитана (свет горит).
Через некоторое время, которое зависит от выставленного значения на R1, происходит закрытие транзистора VT1. Реле K1 в итоге обесточивается, а нагрузка отключается от напряжения.
Время заряда конденсатора C1 определяется произведением его емкости на общее сопротивление цепи зарядки (R1 и R2). Причем первое из этих сопротивлений фиксировано, а второе регулируемо для задания конкретного интервала.
Временные параметры для собранного реле подбираются опытным путем выставлением различных значений на R1. Чтобы впоследствии легче было выполнять уставку нужного времени, на корпусе следует сделать разметку с поминутным позиционированием.
Указать формулу расчета выдаваемых задержек для такой схемы проблематично. Многое зависит от параметров конкретного транзистора и остальных элементов.
Приведение реле в исходное положение производится обратным переключением S1. Конденсатор замыкается на R2 и разряжается. После повторного включения S1 цикл запускается заново.
Один транзистор можно заменить цепью из пары аналогичных, что только повысит стабильность работы собираемого реле времени (+)
В схеме с двумя транзисторами первый участвует в регулировке и управлении временной паузой. А второй – это электронный ключ для включения и отключения питания у внешней нагрузки.
В варианте со сдвоенной схемой один из ключей Б1 “запускает таймер” и включает нагрузку, а второй Б2 отключает ее (+)
Самое сложное в данной модификации – это точно подобрать сопротивление R3. Оно должно быть таким, чтобы реле замыкалось исключительно при подачи сигнала с Б2. При этом обратное включение нагрузки обязано происходить только при срабатывании Б1. Подбирать его придется экспериментально.
Чтобы повысить интервал задержки реле времени, КТ937А можно заменить полевым транзистором с изолированным затвором (например, 2N7000) (+)
У этого типа транзисторов ток затвора очень мал. Если обмотку сопротивления в управляющем реле-ключе подобрать большую (в десятки Ом и МОм), то интервал отключения можно увеличить до нескольких часов. Причем большую часть времени реле-таймер практически не потребляет энергии.
Активный режим в нем начинается на последней трети данного интервала. Если РВ подключить через обычную батарейку, то прослужит она очень долго.
Вариант #2: на базе микросхем
У транзисторных схем есть два основных минуса. Для них сложно рассчитать время задержки и перед очередным пуском требуется разряжать конденсатор. Использование микросхем нивелирует эти недостатки, но усложняет устройство.
Однако при наличии даже минимальных навыков и познаний в электротехнике сделать своими руками подобное реле времени также не составит труда.
Если задержка требуется в интервале от десяти минут до часа, то транзистор лучше всего заменить микросхемой серии TL431 (+)
Порог открытия у TL431 более стабильный за счет наличия внутри источника опорного напряжения. Плюс для ее переключения вольтаж требуется гораздо больший. На максимуме, за счет увеличения значения R2, его можно поднять до 30 В.
Конденсатор до таких значений будет заряжаться долго. К тому же подключения C1 на сопротивление для разрядки в этом случае происходит автоматически. Дополнительно нажимать на SB1 здесь не нужно.
Еще один вариант – это применение «интегрального таймера» NE555. В этом случае задержка также определяется параметрами двух сопротивлений (R2 и R4) и конденсатора (C1).
“Выключение” реле происходит за счет переключения опять же транзистора. Только его закрытие здесь выполняется по сигналу с выхода микросхемы, когда она отсчитает нужные секунды.
“Таймер” на основе микросхемы NE555 во многом повторяет классический вариант на одном транзисторе, но интервал задержек здесь выставляется более точный (от 1 секунды до нескольких минут и часов) (+)
Ложных срабатываний при использовании микросхем выходит гораздо меньше, нежели при применении транзисторов. Токи в этом случае контролируются жестче, транзистор открывается и закрывается именно тогда, когда требуется.
Еще один классический микросхемный вариант реле времени основан на базе КР512ПС10. В этом случае при включении питания цепь R1C1 подает на вход микросхемы импульс сброса, после чего в ней запускается внутренний генератор. Частоту отключения (коэффициент деления) последнего задает регулирующая цепь R2C2.
Количество подсчитываемых импульсов определяется коммутацией пяти выводов M01–M05 в различных комбинациях. Время задержки можно выставить от 3 секунд до 30 часов.
После отсчета указанного числа импульсов на выходе микросхемы Q1 устанавливается высокий уровень, открывающий VT1. В результате срабатывает реле K1 и включает либо выключает нагрузку.
Схема сборки реле времени с помощью микросхемы КР512ПС10 не отличается сложностью, сброс в исходное состояние в таком РВ происходит автоматически при достижении заданных параметров за счет соединения лапок 10 (END) и 3 (ST) (+)
Существуют еще более сложные схемы реле времени на базе микроконтроллеров. Однако для самостоятельной сборки они мало подходят. Здесь сказываются сложности как с пайкой, так и с программированием. Вариаций с транзисторами и простейшими микросхемами для бытового применения вполне хватает в подавляющем большинстве случаев.
Вариант #3: под питание на выходе 220 В
Все вышеописанные схемы рассчитаны на 12-вольтовое выходное напряжение. Чтобы подключить к собранному на их основе реле времени мощную нагрузку, необходимо на выходе устанавливать магнитный пускатель. Для управления электродвигателями или иной сложной электротехникой с повышенной мощностью так и придется делать.
Однако для регулировки бытового освещения можно собрать реле на базе диодного моста и тиристора. При этом подключать через такой таймер что-либо иное не рекомендуется. Тиристор пропускает сквозь себя только положительную часть синусоиды переменных 220 Вольт.
Для лампочки накаливания, вентилятора или ТЭНа это не страшно, а другое электрооборудование подобного может не выдержать и сгореть.
Схема реле времени с тиристором на выходе и диодным мостом на входе рассчитана на работу в сетях 220 В, но имеет ряд ограничений по типу подключаемой нагрузки (+)
Для сборки подобного таймера для лампочки необходимы:
- сопротивления постоянные на 4,3 МОм (R1) и 200 Ом (R2) плюс регулируемое на 1,5 кОм(R3);
- четыре диода с максимальным током выше 1 А и обратным напряжением от 400 В;
- конденсатор на 0,47 мкФ;
- тиристор ВТ151 или аналогичный;
- выключатель.
Функционирует это реле-таймер по общей схеме для подобных устройств, с постепенной зарядкой конденсатора. При смыкании на S1 контактов С1 начинает заряжаться.
В течение этого процесса тиристор VS1 остается открытым. В итоге на нагрузку L1 поступает сетевое напряжение 220 В. После завершения зарядки С1 тиристор закрывается и отсекает ток, выключая лампу.
Регулировка задержки производится выставлением значения на R3 и подбором емкости конденсатора. При этом надо помнить, что любое прикосновение к оголенным ножкам всех использованных элементов грозит поражением током. Они все находятся под напряжение 220 В.
Если нет желания экспериментировать и самостоятельно заниматься сборкой реле времени, можно подобрать готовые варианты выключателей и розеток с таймером.
Подробнее о таких устройствах написано в статьях:
Выводы и полезное видео по теме
Разобраться с нуля во внутреннем устройстве реле времени часто бывает сложно. У одних не хватает познаний, а у других опыта. Чтобы упростить вам выбор нужной схемы, мы сделали подборку видеоматериалов, в которых подробно рассказывается обо всех нюансах работы и сборки рассматриваемого электронного девайса.
Принцип работы элементов реле времени на транзисторном ключе:
Автоматический таймер на полевом транзисторе для нагрузки 220 В:
Пошаговое изготовление реле задержки своими руками:
Собрать самостоятельно реле времени не слишком сложно – есть несколько схем для реализации этого замысла. Все они основаны на постепенной зарядке конденсатора и открытии/закрытии транзистора или тиристора на выходе.
Если нужен простой прибор, то лучше взять транзисторную схему. Но для точного контроля времени задержки придется паять один из вариантов на той или иной микросхеме.
Если у вас есть опыт сборки такого устройства, пожалуйста, поделитесь информацией с нашими читателями. Оставляйте комментарии, прикрепляйте фотографии своих самоделок и участвуйте в обсуждениях. Блок для связи расположен ниже.
Используемые источники:
- https://kiloom.ru/sxema/ciklicheskij-tajmer.html
- https://meandr.org/archives/2269
- https://sovet-ingenera.com/elektrika/rele/rele-vremeni-svoimi-rukami.html