Андрей Смирнов
Время чтения: ~13 мин.
Просмотров: 8

Где применяют ионистор? Типы ионисторов, их назначение, преимущества и недостатки

ustroystvo_princip_raboty.jpgОбычные аккумуляторные батареи в качестве автономного источника питания в некоторых случаях использовать не удается из-за значительных кратковременных токов. Раньше проблему решали совместным использованием конденсатора с большой емкостью. Позже появились ионисторы, которые пришли на замену конденсаторам с относительно малым сроком службы.

Отличие от конденсаторов

Принципиальное отличие ионисторов от конденсаторов состоит в том, что в них нет диэлектрика для разделения электродов. Для них подбирается особое вещество, которое обладает как положительными, так и отрицательными носителями заряда.

bolshaya_emkost_ionistorov.jpgБольшая емкость ионисторов, которая может составлять даже несколько десятков Фарад, обусловлена очень малым расстоянием между противоположными зарядами — порядка нескольких ангстрем. В конденсаторах для этого используют тонкую свернутую фольгу, но расстояние между ее слоями все же намного больше, чем несколько ангстрем.

Для увеличения внутренней поверхности электроды изготавливают из пористого материала. Обычно это активированный или вспененный уголь. Между электродами размещают сепаратор для предотвращения короткого замыкания между ними. Все внутреннее пространство заполняют твердым щелочным или кислотным электролитом. Современные экологические требования привели к тому, что при изготовлении этих элементов питания постепенно перестают использовать токсичные вещества. Все чаще в роли электролита выступает соединение на основе йода, рубидия и серебра (RbAg 4 I 5).

Электроды с электролитом и сепаратором размещаются в герметичном корпусе. К нему припаиваются выводы с указанием полярности. Сам корпус по размеру может быть самым разным и соответствовать стандартным размерам популярных батареек.

Принцип действия и характеристики

Ионисторы, как и аккумуляторы с конденсаторами, имеют несколько рабочих параметров. Все изготавливаемые ионисторы, характеристики которых не сильно отличаются, классифицируются по нескольким параметрам:

  • princip_deystviya_ionistorov.jpgемкость (измеряется в Фарадах);
  • максимально допустимый ток заряда (измеряется в Амперах);
  • номинальное напряжение (измеряется в Вольтах);
  • внутреннее сопротивление (измеряется в Омах).

Во время протекания электрохимической реакции небольшое количество электронов отделяется от электродов, которые получают положительный заряд. Отрицательно заряженные ионы в электролите притягиваются электродами, которые образуют электрический слой. Заряд в элементе накапливается и хранится на границе контакта углеродного электрода и электролита.

Маркировка и область применения

Специальной маркировки ионисторовые конденсаторы на схеме или на корпусе не имеют. Определить, что конкретный элемент является ионистором, можно косвенным образом: большой заряд, небольшие размеры и малое рабочее напряжение являются отличительными признаками ионисторов. Если на корпусе или на схеме будет обозначен элемент с емкостью 1 Фарада и номинальным напряжением, например, 5 вольт, то нет сомнений, что это ионистор. Электролитических конденсаторов с такими параметрами не существует.

Первый советский образец этого элемента был разработан и запущен в производство в 1978 году с маркировкой К58−1. В дальнейшие годы его конструкция улучшалась и появились ионисторы с маркировкой К58−15 и К58−16.

Отраслей техники и науки, где применяют ионисторы, не так уж и много. Чаще всего их применяют в цифровой технике в роли автономного или резервного источника питания. Он запитывает микросхемы памяти, электронных часов, CMOS-чипы и микроконтроллеры различных устройств при отключении внешнего источника электропитания. Определенное время сохраняются все текущие настройки (дата, время, сохраненные частоты радиостанций и т. п. ) при выключении или замене батареек.

Есть данные, что планировалось применение ионистора и при создании так называемой гаусс-пушки, работа которой основана на нестандартном для вооружения физическом принципе — электромагнетизме. Насколько оказались удачными и были ли они реализованы, является неизвестным для широкой публики. Такая информация составляет или коммерческую, или государственную тайну.

Рекомендации по зарядке

Разные производители для своих ионисторов с аналогичными параметрами прилагают практически одинаковую инструкцию по их зарядке: используется исключительно источник постоянного тока для зарядного устройства, величина тока и напряжение которого зависит от конкретного образца элемента. В зависимости от его внутреннего сопротивления и на основе формул Q=C*U и Q=I*t (где Q — заряд, C — емкость, U — напряжение, I — сила тока и t — время) вычисляется напряжение, сила тока и время, необходимые для полной зарядки конкретного ионистора.

Превышение силой тока номинального зарядного значения ради уменьшения времени на зарядку может привести к пробою и короткому замыканию электродов элемента. Как следствие — полный выход из строя элемента, цена которого сравнительно высокая. Так что не рекомендуется экспериментировать и выходить за рамки рекомендованных величин при зарядке ионистора.

Достоинства и недостатки

Положительных качеств у ионисторов достаточно, чтобы они приобрели определенную популярность. Но и негативных качеств немало, поэтому элементы и не приобрели широкого применения в быту, на производстве и транспорте. Из плюсов можно отметить:

  • меньший срок зарядки элемента по сравнению с аккумуляторами;
  • больше количество циклов зарядки и разрядки без значительной потери номинальных характеристик;
  • простое устройство зарядного устройства;
  • сравнительно малый вес и габариты;
  • диапазон рабочих температур от -40 градусов по Цельсию до +70 градусов по Цельсию.

Недостатков меньше, но они существенные:

  • относительно высокая цена;
  • малое номинальное напряжение (последовательное соединение нескольких элементов иногда помогает решить эту проблему);
  • энергетическая плотность меньше, чем у аккумуляторов (при параллельном соединении в некоторых случаях удается решить эту проблему);
  • выход из строя без возможности восстановления при превышении верхнего предела рабочей температуры.

Именно из-за отрицательных аспектов сужается спектр применения этих элементов.

Самостоятельное изготовление элемента

При необходимости иметь низковольтный источник питания большой емкости и нежелание платить довольно большую сумму за ионисторовый конденсатор, его можно изготовить своими руками практически из подручных средств. Для самодельного элемента потребуется:

  • металлический тонкостенный цилиндр для корпуса (может подойти алюминиевая банка из-под газировки или пива);
  • два медных диска малой толщины и диаметра, соизмеримого с корпусом:
  • активированный уголь или угольный стержень;
  • раствор из обычной поваренной соли (из расчета 25 грамм соли на 100 грамм воды).

Порядок работ по собственноручному изготовлению следующий: угольный порошок смешивают с солевым раствором до консистенции пасты, наносимой на оба медных диска в одинаковом количестве. Потом между дисками помещают немного ваты для разделения электродов и исключения короткого замыкания между ними, заливают электролит (солевой раствор) и запечатывают края банки. Для удобства к медным дискам-электродам припаивают контактные выводы. Самодельный ионисторовый конденсатор готов к применению. Его ориентировочная емкость может составлять от 0,3 до 0,5 Фарад.

Ионисторы — это автономные источники питания, которые не получили широкого применения из-за наличия нескольких серьезных недостатков. Несмотря на это, в некоторых случаях использование ионистора будет отличным решением. Чтобы понять суть его работы, можно сначала попробовать изготовить его самостоятельно, а уж потом решаться на покупку.

Устройство, характеристики и применение ионисторов

Сравнительно недавно в широкой продаже появились так называемые ионисторы. По-иному их ещё называют суперконденсаторами. По размерам они сравни обычным электролитическим конденсаторам, но обладают по сравнению с ними, гораздо большей ёмкостью.

Ионистор – это некий гибрид конденсатора и аккумулятора. В зарубежной литературе ионистор называют сокращённо EDLC, что расшифровывается как Electric Double Layer Capacitor, что по-русски означает: конденсатор с двойным электрическим слоем. Работа ионистора основана на электрохимических процессах.

Устройство ионистора.

Отличие ионистора от конденсатора заключается в том, что между его электродами нет специального слоя из диэлектрика. Взамен этого электроды у ионистора сделаны из веществ, обладающими противоположенными типами носителей заряда.

Как известно, электрическая ёмкость конденсатора зависит от площади обкладок: чем она больше, тем больше ёмкость. Поэтому электроды ионисторов чаще всего делают из вспененного углерода или активированного угля. Благодаря этому приёму удаётся получить большую площадь своеобразных «обкладок». Электроды разделяются сепаратором и всё это находятся в электролите. Сепаратор необходим исключительно для защиты электродов от короткого замыкания. Электролит же выполняется на основе растворов кислот и щелочей и является кристаллическим и твёрдым.

Например, с помощью твёрдого кристаллического электролита на основе рубидия, серебра и йода (RbAg4I5) возможно создание ионисторов с низким саморазрядом, большой ёмкостью и выдерживающие низкие температуры. Также возможно изготовление ионисторов на основе электролитов растворов кислот, таких как H2SO4. Такие ионисторы обладают низким внутренним сопротивлением, но и малым рабочим напряжением около 1 В. В последнее время ионисторы на основе электролитов из растворов щелочей и кислот почти не производят, так как такие ионисторы содержат токсичные вещества.

В результате электрохимических реакций небольшое количество электронов отрывается от электродов. При этом электроды приобретают положительный заряд. Отрицательные ионы, которые находятся в электролите, притягиваются электродами, которые заряжены положительно. В итоге всего этого процесса и образуется электрический слой.

Заряд в ионисторе сохраняется на границе раздела электрода из углерода и электролита. Толщина электрического слоя, который образован анионами и катионами, составляет очень малую величину порой равную 1…5 нанометрам (нм). Как известно, с уменьшением расстояния между обкладками ёмкость возрастает.

К основным положительным качествам ионисторов можно отнести:

  • Малое время заряда и разряда. Благодаря этому ионистор можно быстро зарядить и использовать, тогда, как на заряд аккумуляторных батарей уходит значительное время;

  • Количество циклов заряд/разряд – более 100000;

  • Не требуют обслуживания;

  • Небольшой вес и габариты;

  • Для заряда не требуется сложных зарядных устройств;

  • Длительный срок службы.

К отрицательным свойствам ионисторов можно отнести всё ещё высокую стоимость, а также довольно малое напряжение на одном элементе ионистора. Номинальное рабочее напряжение ионистора зависит от типа используемого в нём электролита.

Чтобы увеличить рабочее напряжение ионистора их соединяют последовательно, также как и при соединении батареек. Правда, для надёжной работы такого составного ионистора нужно каждый отдельный ионистор шунтировать резистором. Делается это для того, чтобы выровнять напряжение на каждом отдельном ионисторе. Это связано с тем, что параметры отдельных ионисторов отличаются. Ток, который течёт через выравнивающий резистор, должен быть в несколько раз больше тока утечки (саморазряда) ионистора. Значение тока саморазряда у маломощных ионисторов составляет десятки микроампер.

Также стоит помнить, что ионистор – это полярный компонент. Поэтому при подключении его в схему нужно соблюдая полярность.

Кроме этого стоит избегать короткого замыкания выводов ионистора. И хотя ионисторы достаточно устойчивы к короткому замыканию, оно может привести к чрезмерному повышению температуры сверх максимального вследствие теплового действия тока, а это приведёт к порче ионистора.

Ионисторы прекрасно работают в цепях постоянного и пульсирующего тока. Правда, в случае протекания через ионистор пульсирующего тока высокой частоты он может нагреваться из-за высокого внутреннего сопротивления на высоких частотах. Как уже говорилось, увеличение температуры электродов ионистора выше максимально допустимой приводит к его порче.

В документации на ионистор, как правило, указывается значение его внутреннего сопротивления на частоте 1 кГц. Например, для ионистора DB-5R5D105T ёмкостью 1 Фарада внутреннее сопротивление на частоте 1 кГц составлет 30Ω. Также существуют ионисторы с ещё меньшим внутренним сопротивлением. Они маркируются как Low resistance или Low ESR. Такие ионисторы заряжаются быстрее.

Для постоянного тока же внутреннее сопротивление ионистора мало и составляет единицы миллиом – десятки ом.

Обозначение ионистора на схеме.

На схемах ионистор обозначается также как и электролитический конденсатор. Тогда же встаёт вопрос: «А как же определить, что на принципиальной схеме изображён именно ионистор?»

Определить, что на схеме изображён ионистор можно по значению номинальных параметров. Если рядом с обозначением указано, например, 1F * 5,5 V, то тут сразу станет понятно, что это ионистор. Как известно, электролитических конденсаторов ёмкостью 1 Фарада не существует, а если и существует, то габариты у него немалые . Также сразу бросается в глаза номинальное напряжение в 5,5 V. Как уже говорилось, ионисторы в принципе не рассчитаны на большое рабочее напряжение.

Где применяются ионисторы?

Очень часто ионисторы можно встретить в цифровой аппаратуре. Там они выполняют роль автономного или резервного источника питания для микроконтроллеров (IC’s), микросхем памяти (RAM’s), КМОП-микросхем (CMOS’s) или электронных часов (RTC). Благодаря этому даже при отключенном основном питании электронный прибор сохраняет заданные настройки и ход часов. Так, например, в кассетном аудиоплеере Walkman используется миниатюрный ионистор.

При замене аккумуляторов или батареек в плеере он полностью обесточивается, что неизбежно приводит к стиранию настроек (например, частот радиостанций, установок эквалайзера, сброс хода электронных часов). Но этого не происходит благодаря тому, что электронную схему в «ждущем» режиме питает заряженный ионистор. И хотя ёмкость его несоизмеримо меньше, чем ёмкость аккумулятора или батареи этого хватает для сохранения настроек и работы часов в течение нескольких суток!

Ионистор является достаточно новым электронным компонентом. Впервые ионистор был разработан в Соединённых штатах в 1960-х годах. А позднее, в 1978 году, ионисторы появились и в СССР под маркой К58-1. Это был первый отечественный ионистор. Далее промышленность стала выпускать ионисторы марок К58-15 и К58-16.

Как можно применить ионистор в самодельных конструкциях? Его можно использовать в качестве аварийного источника питания, например, в конструкциях на микроконтроллерах. Вот простейшая схема включения ионистора в цепь питания электронного устройства.

Диод VD1 служит для предотвращения разряда ионистора С1, когда напряжение питания равно 0 (Uпит=0). В качестве диода VD1 лучше применить диод Шоттки, например, 1N5817 и аналогичные, так как у них малое падение напряжения на открытом переходе. Резистор R1 препятствует перегрузке источника питания, ограничивая зарядный ток ионистора. Его можно не устанавливать, если источник питания выдерживает ток нагрузки 100 – 250 мА. Rн – это сопротивление нагрузки (питаемое устройство, например, микроконтроллер).

Под занавес сего повествования хочется показать какое-нибудь видео. Видео не моё, нашёл в YouTube. Показано, как можно запитать светодиод от заряженного ионистора ёмкостью в 0,047 Ф. Ионистор на 5,5 V, поэтому если решите повторить эксперимент, то заряжайте его 3 вольтами, иначе можно нечаянно спалить светодиод.

Кстати, у меня оказывается, точно такой же ионистор в запаснике завалялся. А у Вас есть ионистор?

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

  • Как устроено электромагнитное реле?

  • Как проверить ИК-приёмник?

Требования снизить размеры радиодеталей при увеличении их технических характеристиках послужило причиной появления большого количества приборов, которые сегодня используются повсеместно. Это в полной мере коснулось и конденсаторов. Так называемые ионистры или суперконденсаторы являются элементами с большой емкостью (разброс данного показателя достаточно широк от 0,01 до 30 фарад) с напряжением зарядки от 3 до 30 вольт. При этом их размеры очень малы. А так как предмет нашего разговора – это ионистр своими руками, то необходимо в первую очередь разобраться с самим элементом, то есть, что он собой представляет.

maxresdefault-5-2-600x338.jpg

Конструктивные особенности ионистра

По сути, это обычный конденсатор с большой емкостью. Но у ионистров большое сопротивление, потому что в основе элемента лежит электролит. Это первое. Второе – это небольшое напряжение зарядки. Все дело в том, что в этом суперконденсаторе обкладки располагаются очень близко друг к другу. Именно это и является причиной сниженного напряжения, но именно по этой причине и увеличивается емкость конденсатора.

Заводские ионистры изготавливаются из разных материалов. Обкладки обычно делаются из фольги, которые разграничивает сухое вещество сепарирующего действия. К примеру, активированный уголь (для больших обкладок), оксиды металлов, полимерные вещества, у которых высокая электрическая проводимость.

Собираем ионистр своими руками

Сборка ионистра своими руками – дело не самое простое, но в домашних условиях его сделать все же можно. Есть несколько конструкций, где присутствуют разные материалы. Предлагаем одну из них. Для этого вам понадобится:

  • металлическая баночка от кофе (50 г);
  • активированный уголь, который продается в аптеках, его можно заменить истолченными угольными электродами;
  • два круга из медной пластины;
  • вата.

В первую очередь необходимо приготовить электролит. Для этого сначала надо истолочь активированный уголь в порошок. Затем сделать солевой раствор, для чего в 100 г воды надо добавить 25 г соли, и все это хорошо перемешать. Далее, в раствор постепенно добавляется порошок активированного угля. Его количество определяет консистенция электролита, она должна быть плотностью, как замазка.

Читайте также:  Разбираемся как проверить тиристор мультиметром

Hybrid-ultracapacitor-1-600x498.jpg

После чего готовый электролит наносится на медные круги (на одну из сторон). Обратите внимание, чем толще слой электролита, тем больше емкость ионистра. И еще один момент, толщина наносимого электролита на двух кругах должна быть одинаковая. Итак, электроды готовы, теперь их надо разграничить материалом, который бы пропускал электрический ток, но не пропускал угольный порошок. Для этого используется обычная вата, хотя вариантов и здесь немало. Толщина ватного слоя определяет диаметр металлической баночки от кофе, то есть, вся эта электродная конструкция должна в нее спокойно поместиться. Отсюда, в принципе, и придется подбирать размеры самих электродов (медных кругов).

Остается только сами электроды подключить к выводам. Все, ионистр, изготовленный своими руками, да еще в домашних условиях, готов. У такой конструкции не очень большая емкость – не выше 0,3 фарад, да и напряжение зарядки всего лишь один вольт, но это самый настоящий ионистр.    Maxwell_supercapacitor_MC2600_series_2600F-600x389.jpg

Заключение по теме

Что можно еще в дополнении сказать об этом элементе. Если его сравнивать, к примеру, с аккумулятором никель-металлгидридного типа, то ионистр спокойно может держать запас электроэнергии до 10% от аккумуляторной мощности. К тому же спад напряжения у него происходит линейно, а не скачкообразно. Но уровень зарядки элемента зависит от технологического его назначения.

Используемые источники:

  • https://rusenergetics.ru/praktika/primenenie-ionistora
  • https://go-radio.ru/ionistor.html
  • http://onlineelektrik.ru/eoborudovanie/kondensatori/kak-sdelat-ionistr-svoimi-rukami.html

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации