Андрей Смирнов
Время чтения: ~16 мин.
Просмотров: 18

Lvds контроллер для матрицы.

Автор: · Опубликовано 10.10.2018 · Обновлено 17.04.2019

edp_30_pin_foto-720x340.jpg

Введение.

Доброго времени суток! Данная статья посвящена eDP интерфейсу. Его стандартизации и принципам работы на примере внутреннего дисплея ноутбука. Основам диагностики и ремонта в сравнении с LVDS.

Стандартизация.

eDP (Embedded Display Port) — встроенный порт дисплея. Является стандартом VESA (Video Electronics Standard Association). Это ассоциация объединенная из большинства крупных производителей видео электроники. Основанная компанией NEC в 1989 году. Изначальное назначение ассоциации было создание стандарта SVGA для видеодисплеев. Затем организация продолжила свое существование создавая новые стандарты для производителей видео электроники.

Интерфейс eDP является усовершенствованным продолжением стандартного VESA DisplayPort. Принятого ассоциацией в 2006 году в качестве наиболее современного видеоинтерфейса не подлежащего платному лицензированию, как аналог HDMI. Способного на работу с большой шириной канала передачи данных, таких как видео и звук. DisplayPort наиболее часто встречается на видеокартах стационарных компьютеров, телевизорах, мониторах. В качестве интерфейса для подключения внешних устройств передачи видеосигнала.

displayport.jpg
VESA Display Port

Преимущества eDP над LVDS.

Несмотря на полную совместимость цифрового сигнала с внешним DisplayPorteDP дополнен функциями для использования внутри устройств. Такими, как: электропитание дисплея, частота, уровень подсветки, управление буфером Panel Self-refresh

Panel Self-refresh — технология, когда дисплей отображает необходимую картинку при отсутствии видеосигнала. И меняет ее по требованию графического процессора. Для реализации временного отключения графического процессора и передачи видеосигнала с него на дисплей, в случае простоя системы или отображения картинки без изменения. Круто, да?

Еще eDP поддерживает интеграцию в видеосигнал дополнительных цифровых пакетов для реализации других интерфейсов на плате дисплея (TCON). Например микрофон, вэб-камера, TouchScreeen, USB хаб. Что позволяет снизить количество проводников в шлейфе для подключения к системной плате и сократить стоимость деталей и обслуживания. 

Снижено общее количество линий необходимых для передачи данных в отличие от LVDS. Без потери качества и с контролем четности!

lvds_vs_edp_video_signal.jpg

То есть имеем значительное превосходство над LVDS. И в ближайшие несколько лет, я думаю этот стандарт вытеснит с рынка устаревший.

Таблица для сравнения технических характеристик интерфейсов представлена ниже.

  edp lvds
2 пары без дополнительных проводников для генерации частот 8 пар проводников для сигнала и 2 пары для генерации частот (двухканальный режим)
Скорость отдельной пары 1.6 , 2.7, или 5,4 Гбит/сек с будущим возможным увеличением 945 Мбит/сек
Генерация частот Встроенная Отдельная тактовая пара на канал.
Вид передачи данных Расширяемая пакетная передача для видео, аудио и дополнительных сигналов Фиксированная с несжатым пиксельным растром
Скорость двунаправленного канала передачи дополнительных данных от 1 Mbps до 720 Mbps для AUX и Fast AUX 100 kHz
Кодирование сигнала ANSI 8B/10B Serialized at 7x pixel clock rate
Защита отображаемого контента Нет
Характеристика сигнала Переменный ток с диапазоном 600mV DC сигнал c диапазоном 700 mV.

Принцип работы.

В основе eDP интерфейса лежит та же дифференциальная передача сигнала по проводникам, как и LVDS. Но имеет значительно большую скорость и сжатую, пакетную структуру передачи данных с контролем четности. Без дополнительных линий для генерации тактовых частот.

Дополнительные данные, такие как параметры подсветки, EDID, Panel Self-refresh, контрольные суммы аудио и видеосигнала. Передаются также в сжатом виде по отдельной паре (Aux или Fast Aux). А процессор расположенный на плате TCON дисплея, распаковывает сигнал применяя его непосредственно для дисплея и на дополнительные его компоненты. Что в значительной степени и отличает его от LVDS.

Более того, в канал Aux возможна интеграция пакетов для работы вэб-камеры или тачскрина. Что позволяет значительно сократить количество проводников в шлейфе соединяющем части мобильного компьютера. Упростить и удешевить конструкцию, без ущерба качеству и надежности итоговых изделий.

Схема передачи и распределения данных в интерфейсе eDP.

Из схемы приведенной выше, можно понять принцип работы интерфейса. А также вектор диагностических действий в случае возникновения проблем.

Диагностика.

По сути интерфейс можно разделить на несколько типов сигнала. Пары Main Link — служат для передачи видеосигнала, количество каналов зависит от требуемого формата изображения. Aux — дополнительные служебные пакеты. HPD (Hot Plug Detect) — определение горячего подключения дисплея. И конечно питание TCON (обычно 3.3V) и подсветки матрицы (7-24V).

По проверке напряжения наверное все ясно! Проверяется уровень напряжения, стабильность. В случае отсутствия, сопротивление относительно земли. Пары Main и Aux лучше проверять на осциллографе либо на профессиональных мультиметрах, там должен быть обмен цифровыми данными. В случае отсутствия сигнала необходима проверка сопротивления относительно земли и соответствия условий появления обмена. Сопротивление относительно земли не должно быть ниже 100 Kohm, наверное это и так понятно.

Сигнал HPD (Hot Plug Detect) — сигнал, появление которого означает присутствие устройства eDPDP. Только при его присутствии должен начинаться обмен по Aux и запуск по парам Main видеосигнала. Но бывают исключения.

В случаях пробоя одной из пар Main. Симптомы различны, от запуска матрицы только на определенном разрешении, до полного отсутствия изображения и подсветки. Если пробит Aux, изображения на дисплее не будет, так как данные о параметрах дисплея не переданы.

Встречаются проблемы с регулировкой уровня подсветки матрицы или полного его отсутствия. В отличие от LVDS, виновником таких симптомов может быть программная часть и сам дисплей (точнее плата TCON и непосредственно LED драйвер, светодиоды). Так как параметры подсветки передаются в цифровом виде по Aux/Fast Aux.

Что касается EDID и его прошивки. Он также есть на дисплеях с интерфейсом eDP. Микросхема памяти содержащей EDID либо встроена в процессор TCON или внешняя, но взаимодействует только с ним. Все параметры дисплея передаются по Aux.

Последовательность запуска видеосигнала.

Для формирования видеосигнала на парах Main необходимо соблюдение последовательности:

  1. Питание TCON 2.7-3V и питание подсветки 7-30V;
  2. Сигнал HPD (2.7-3.3V);
  3. Обмен по Aux (если все нормально, запускаем видеосигнал);
  4. Обмен по Main (видеосигнал)
  5. Запуск LED драйвера и подсветки.

Распиновка стандартной 30 pin eDP матрицы.

Распиновка стандартной 40 pin eDP матрицы.

Заключение.

Ну в общем-то и все что я хотел вам рассказать об eDP! Как оказалось, он значительно более простой в диагностике чем привычный LVDS. Подписывайтесь на меня в социальных сетях, для получения ссылок на актуальные посты. Был рад помочь!

На просторах интернета очень много описаний того, как подключить универсальный скалер к матрице, но подробной схемы полного подключения не нашлось. А если и есть, то найти её очень сложно. Всё приходится составлять из 2-3 статей. Решено сделать полное описание, основываясь на собственном подключении.

В закромах чулана завалялось 2 монитора, 17″ и 19″. Один показывал только синим, второй — только зелёным. Матрицы обе живые, как раз для экспериментов со скалером.

Первый образец : Samsung 940n,

с матрицей — HSD190MEN3

Второй образец : Proview ma782Kc,

с матрицей — PV170LCM

Закупленный универсальный скалер: модель — LA. MV29.P.

Схема, по которой подключаем данное произведение китайских инженеров:

Блок питания монитора — инвертор монитора — скалер — матрица — кнопки — колонки.

Кроме самого скалера ничего не покупалось: ни шлейфов, ни кнопок, ни инверторов.

Подключение блока питания и инвертора монитора к скалеру.

Тут всё настолько просто, что даже стало как-то грустно ((

Достаточно подключить: питание к скалеру, управление инвертором и яркостью накала ламп.

Нам потребуется 4 контакта: плюс , минус, контакт включения инвертора (ламп подсветки) и управление яростью ламп. На самом блоке питания это контакты:

BLON — всё, что написано ON, — это и есть включение инвертора.BRI — управление яркостью, очень часто обозначается как DIM.+14V — понятно, что + питания, но не забываем, что у нас скалер на 12 — необходимо понизить, об этом далее.GDN — минус (земля).

Куда всё это припаивать на скалере ?

Контакты скалера и соответствие сигналов.

Находим сам разъём инвертора.

И согласно маркировке подключаем.

Незабываем, что питания в 14 вольт много для скалера, рекомендую поставить стабилизатор напряжения на 12 вольт (например, L МС 7812) в разрез питания (можно любой другой на 12 вольт, соответственно с его схемой подключения). В моём случае схема подключения стабилизатора такая:

Подключение IR приёмника к скалеру.

У меня ИК приёмник шёл отдельно.

Подключаем его к скалеру следующим образом:

После подключения можно проверить работу нашего скалера и включение инвертора, (появляется подсветка). Если всё отлично работает, приступаем к подключению матрицы.

Подключение матрицы к скалеру.

На самом деле, мне повезло, и у меня подключение обеих матриц было идентично. Пришлось только разобрать шлейф монитора 17″ и просто переставить контакты местами. Входы в матрицу тоже идентичны, в итоге я одним шлейфом проверил сразу 2 матрицы разных мониторов.

 Разъём и обозначения на матрице.

Видно 10 каналов, питание 5 вольт и промежутки между каналами — это масса.

Разъём скалера.

Трындец, вот тут я встал в ступор. Ни одной маркировки на данный разъём.

Хорошо, что есть добрые люди, которые выложили другую версию скалера с точно такой же распиновкой.

На шлейфе от матрицы до родного скалера всё перепутано. Надо исправить)

Частое обозначение Моя матрица Универсальный Скалер
LCD-VDD питания для панели VDD + 5V VLCD
LCD-VDD питания для панели VDD + 5V VLCD
LCD-VDD питания для панели VDD + 5V VLCD
GND Земля GND GND
GND Земля GND GND
GND Земля GND GND
RXO0- LVDS ODD 0 — Signal RA_NO BTXO-
RXO0 + LVDS ODD 0 + Signal RA_PO BTXO +
RXO1- LVDS ODD 1 — Signal RB_NO BTX1-
RXO1 + LVDS ODD 1 + Signal RB_PO BTX1 +
RXO2- LVDS ODD 2 — Signal RC_NO BTX2-
RXO2 + LVDS ODD 2 + Signal RC_PO BTX2-
GND Земля GND GND
GND Земля GND GND
RXOC- LVDS ODD Clock — Signal RCLK_NO BTXC-
RXOC + LVDS ODD Clock + Signal RCLK_PO BTXC +
RXO3- LVDS ODD 3 — Signal RD_NO BTX3-
RXO3 + LVDS ODD 3 + Signal RD_PO BTX3 +
RXE0- LVDS EVEN 0 — Signal RA_NE ATXO-
RXE0 + LVDS EVEN 0 + Signal RA_PE ATXO +
RXE1- LVDS EVEN 1 — Signal RB_NE ATX1-
RXE1 + LVDS EVEN 1 + Signal RB_PE ATX1 +
RXE2- LVDS EVEN 2 — Signal RC_NE ATX2-
RXE2 + LVDS EVEN 2 + Signal RC_PE ATX2 +
GND Земля GND GND
GND Земля GND GND
RXEC- LVDS EVEN Clock — Signal RCLK_NE ATXC-
RXEC + LVDS EVEN Clock + Signal RCLK_PE ATXC +
RXE3- LVDS EVEN 3 — Signal RD_NE ATX3-

RXE3 + LVDS EVEN 3 + Signal

RD_PE ATX3 +

То есть: питание первым, а дальше, как разведено на матрице, по порядку, по 2 сигнальных провода. Не путаем + и -, незабываем про земляные (GND).

Вот так получилось у меня.

Вариант для проверки.

Окончательный вариант.

На матрице два левых питание +5 их вставляем первыми, затем один красный их середины, это общий. Если перевернуть матрицу, то видно что они уходят на массу.

А далее, первая пара, вторая пара и т.д.

Для контроля я подключил только общий и питания, включил скалер. Сразу стало понятно, что матрица работает, она сразу стала чёрной. Без питания, когда работают только лампы, она более светлая.

Подключение кнопок управления и колонок к скалеру.

Кнопки к скалеру можно подключить двумя способами. Разъём Key port.

Первый вариант: двумя проводами GND и K0 , в данном случае каждая кнопка подключена через своё сопротивление.

Где :

Второй вариант: каждая кнопка имеет свой контакт на скалере, и через кнопку уходит на ноль (GND).

Где :

Есть возможность подключить 2 светодиода. Один красный — режим ожидания, второй зелёный — включение. Подключить их можно к выводам GRN и RED соответсвенно.

Надеюсь, после данной статьи, ответ на вопрос, как подключить универсальный скалер к матрице, найден)

Доброго времени суток! Сегодня я вам расскажу как при помощи одной посылочки из Китая и хлама который валяется у вас дома сделать телевизор, ну или по крайней мере монитор. Дело в том, что у многих, наверное, валяются еще древние ноутбуки, какие-то испорченные мониторы, нерабочие планшеты и все это можно пустить в ход. Ну да отдельно матрицу подключить нельзя, но с помощью нехитрого устройства, а именно универсального скалера, можно подключить любую матрицу к HDMI, VGA или даже сделать телевизор.

И так, что мы имеем.

Я заказал себе довольно такой продвинутый скалер.

1479332623_1-prodvinutyy-skaler.jpg

И попался под руку вот такой планшет, он еще живой хотя уже и битый сенсор, батарея не так хорошо держит, весь поцарапанный, но матрицу из него можно позаимствовать.

1479332762_2-planshet.jpg

Разбираем планшет, чтоб получить доступ к матрице.

1479332826_2-razbiraem-planshet.jpg

Отключаем все шлейфы и отбрасываем в сторону все, кроме матрицы.

1479332871_4-matrica-ot-plansheta.jpg

Матрицы имеют довольно стандартное подключение, в них интерфейс LVDS и стандартизированный ряд разъёмов. Какой разъем у вашей матрицы можете посмотреть по внешнему виду либо же по даташиту. На каждый тип матрицы существует отдельный шлейф. Например у меня есть несколько шлейфов.

Более старый стандарт, от матриц с ламповой подсветкой

1479333043_5-shleyf-1.jpg

Более новый стандарт, от матриц с светодиодной подсветкой

1479332975_5-shleyf-2.jpg

Шлейф для более мелких планшетов

1479332970_5-shleyf-3.jpg

1 – это более старый стандарт, там где матрицы еще были с ламповой подсветкой.

2 – более новый стандарт, там где LED-матрицы идут.

3 – эти разъёмы встречаются в 7 дюймовых планшетах и разных небольших.

С другой стороны разъёмы более-менее стандартизированы и подходят в практически любой универсальный скалер.

Таким скалером я еще ни разу не пользовался в этом гораздо больше функций по сравнению с теми, что я использовал, даже пульт в комплекте.

1479333258_6-foto-pulta-i-skalera.jpg

Прежде чем подключать матрицу необходимо правильно сконфигурировать плату (скалер), чтоб не испортить матрицу. Обязательно рекомендую сначала скачать даташит к матрице, чтоб вы знали, какое разрешение матрицы, какое питание логики и подсветки.

Первое с чего стоит начать, будем смотреть слева на право. На скелере есть ряд перемычек, левая верхняя конфигурирует напряжение логики, его необходимо выбрать исходя из вашей матрицы. Как правило, матрицы ноутбуков имеют питание 3.3 вольта, в обычных мониторах 5 вольт, но здесь еще есть перемычка на 12 вольт, честно говоря, я не знаю, где такое напряжение используется. Сразу меняем эту перемычку, чтобы не спалить нашу матрицу, в моем случае логика 3.3 вольта.

1479333569_7-peremychka-opornogo-napryazheniya-logiki.jpg

Дольше идет следующий набор перемычек, это выставляется разрешение экрана. Хочу заметить, что помимо разрешения экрана еще меняется битность. На обратной стороне скалера есть шпаргалка, в которой написано разрешение и битность. Битность бывает 6-bit и 8-bit, визуально разъёмы 6-ти и 8-ми битные различаются по количеству контактов. Информацию какой битности ваша матрица опять же читаем в даташите.

6 и 8 битные шлейфы

1479333635_8-shesti-i-vosmi-bitnye-shleyfy.jpg

Шпаргалка по переключению перемычек

1479333552_8-shpargalka-nastroyki-razresheniya-i-bitnosti.jpg

Прежде чем переходить к матрице необходимо изучить даташит, его очень легко найти по наклейке, которая находится сзади матрицы. В моем случае это «LP101WX1». В даташите на матрицу нас интересуют 3 или 4 пункта, в зависимости от того это LED-матрица или это матрица с лампой с холодным катодом. Прежде всего, определим какое разрешение матрицы, просто листаем даташит и ищем эту запись. Здесь у нас в таблице указан формат пикселей (Pixel Fotmat) то есть это 1280×800, соответственно перемычками на сайлере необходимо выбрать это разрешение. Ширина интерфейса соответствует количеству цветов, в данном случае это 6-bit или 262 144 цветов. Этих двух параметров нам достаточно чтоб выбрать правильный режим работы матрицы.

1479333734_9-tablica-iz-datashita-s-razreshenie-matricy.jpg

Но для того чтобы матрица выжила нам еще нужно выставить правильное напряжение, листаем дальше. И вот у нас сводная таблица электрических характеристик. Logic, то есть питание логики, напряжение питания логики (Power Supply Input Voltage) от 3,0 до 3,6 вольт, типичное 3,3 вольта, соответственно перемычку питания матрицы выставляем на 3.3 вольта.

И на всякий случай смотрим подсветку, этот пункт нужно смотреть только в том случает если матрица с LED подсветкой. Как написано на плате, плата питается от 12 вольт, а наша подсветка работает от 5 до 21 вольта, 12 как раз будет в самый раз. Я других матриц не встречал у которых напряжение питания 5 вольт, но предполагаю, что такое может быть, если будете использовать матрицу из какого ни будь маленького планшета. Поэтому вот этот параметр обязательно смотрите, иначе можете просто испортить подсветку матрицы. Если же питание будет отличное от 12 вольт, то напрямую подключать разъем питание подсветки нельзя, нужно будет обеспечить нужное напряжение питания.

И так, настраиваем скалер в соответствии с данными из даташита. Меня интересует разрешение 1280×800 и 6-bit, для этого ставлю перемычки F и G

Перемычки сконфигурировали, теперь давайте пройдемся по элементам на плате.

1 — первые два разъема это питание

2 – последовательный порт

3 – DC-DC преобразователь

4 – линейный стабилизатор

5 – разъемы (VGA, HDMI, RCA, звук и высокочастотное подключение антенны)

6 – управление подсветкой

7 – кнопки и всякое управление

8 – разъем LVDS, куда подключается матрица

9 — память

10 – процессор

11 – усилитель мощности

12 – TV-тюнер

13 – USB-разъем, фильмы он читать не умеет, он здесь для обновления прошивки

Подробнее о разъёмах

Разъем управления подсветкой.

Если у вас LED-матрица, то есть светодиодная, то заморачиваться не стоит, у вас прямо в матрице установлен контролер управления подсветкой и этот разъем входит прямо в шлейф. Т.е. Просто подключаете матрицу и больше не над чем заморачиваться не нужно.

Если же матрица древняя на CCFL-лампах, определить это можно по дополнительным проводам выходящим из матрицы.

В матрице могут быть установлены такие лампы и из нее выходят провода. В ноутбуках обычно выходит 1 провод, в матрице монитора 2 или 4. Для того чтобы подключить такую матрицу можно использовать универсальный инвертор для подсветки. Он бывает на 1, 2 и 4 выхода, т.е. каждый выход это подключение одной лампы. Инвертор нужно подбирать по количеству ламп в вашей матрице, то есть нельзя подключить в инвертор с 4-мя выходами только 2 лампы, так как инвертер уйдет в защиту, потому что все выходы должны быть равномерно нагружены. Поэтому если матрица на 2 лампы, покупаем инвертор на 2 выхода, если на 1 лампу, покупаем на 1 выход. Разъемы унифицированы поэтому подходят сразу 1 в 1, просто вот так втыкаются и все.

Подключение инвертора подсветки к скалеру

Подключение инвертора подсветки к лампам

Приступим к подключению

Для этого нам нужен шлейф, он легко втыкается, перемычки на плате уже сконфигурированы. LVDS выравниваем по первой ножке, на шлейфе это маркировка в виде пятна краски, а на плате треугольник — это первая ножка.

На всякий случай проверяем, подходит ли подсветка. Красный – плюс, черный – минус и единственный провод это включение подсветки. Переворачиваем плату на обратную сторону и сравниваем надписи возле контактов с проводами, если все сходится подключаем.

Еще нам нужно какое ни будь управление. Кстати подробнее об управлении, колодка, куда я подключил ИК-приемник это управление. Сюда идут кнопки, они все подписаны, кнопки можно приобрести отдельно или подключить свои.

В принципе это все, все что нужно подключили.

Переворачиваем матрицу и подключаем питание. Если вы собираетесь подключаться к компьютеру, то можно взять питание с БП компьютера. Включаем…

Теперь необходимо разобраться с пультом, чтоб найти меню и поменять язык. Думаю этот процесс описывать не стоит, так как у вашего скалера все может быть по другому. К сожалению, у себя я нашел только английский, но не беда, буду пользоваться ним. И на этой же вкладке настроек я нашел размер меню и увеличил его, чтоб все было лучше видно.

Ну что, попробуем подключить камеру через HDMI. В общем подключив камеру получилось, что полутона цветов отображались неправильно.

Я сначала подумал что сгорел буфер опорных напряжений в матрице, но подключив матрицу к планшету понял, что с матрицей все в порядке, она не сгорела. Покопавшись на просторах интернета, нашел сервисное меню. Оказывается нужно в сервисном меню изменить способ работы скалера с матрицей. Для этого заходим в меню и набираем код 8896, и нам открывается сервисное меню. В меню находим системные настройки (System setting) -> Настройки панели (Panel setting) -> и просто изменяем цветовую схему (Color set). Перебирая все варианты находим самый оптимальный, для меня это был 3. В других моделях скалеров может быть другой код доступа в сервисное меню и немного другой путь к настройкам цветовой схемы.

Выходим из меню и видим, что все цвета отображаются правильно.

Таким же способом можно подключить матрицу от почти любого планшета или монитора.

Ссылки на скалеры и шлейфы:

Универсальный скалер LVDS с TV тюнером и HDMI 

Универсальный скалер LVDS с VGA 

Шлейф LVDS 30pin 8bit 

Шлейф LVDS 30pin 6bit 

Шлейф LVDS 40pin 6bit 

Шлейф LVDS 51pin 8bit 

Универсальный инвертор 1 лампа 

Универсальный инвертор 2 лампы 

Универсальный инвертор 4 лампы 

Блок питания 12V 4А 

Используемые источники:

  • https://novoselovvlad.ru/2018/10/10/edp-%d0%b8%d0%bd%d1%82%d0%b5%d1%80%d1%84%d0%b5%d0%b9%d1%81-%d0%b2-%d0%bd%d0%be%d1%83%d1%82%d0%b1%d1%83%d0%ba%d0%b5-%d1%87%d1%82%d0%be-%d1%8d%d1%82%d0%be/
  • https://turbo-blog.ru/kak-podklyuchit-universalnyj-skaler-k-matritse/comment-page-1/
  • https://cxemok.ru/dlia_doma/294-delaem-monitor-i-televizor-iz-starogo-plansheta-pri-pomoschi-skalera-lvds.html

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации