Андрей Смирнов
Время чтения: ~17 мин.
Просмотров: 5

Что такое диод Шоттки, его характеристики и способ проверки мультиметром

Что такое диод Шоттки

Диод Шоттки относится к семейству диодов. Выглядит он почти также, как и его собратья, но есть небольшие отличия.

шоттки-фото-много.jpg

Простой диод выглядит на схемах вот так:

диод-обозначение-на-схеме.jpg
обозначение диода на схеме

Стабилитрон уже обозначается, как диод с “кепочкой”

стабилитрон-на-схемах.jpg
обозначение стабилитрона на схеме

Диод Шоттки имеет две “кепочки”

обозначение диода шоттки на схеме

Чтобы проще запомнить, можно добавить голову и ножки и представить себе человечка, танцующего ламбаду)

Обратное напряжение диода Шоттки

Итак, как вы помните, диод пропускает электрический ток только в одном направлении, а в другом направлении блокирует прохождение электрического тока до какого-то критического значения, называемым обратным напряжением диода.

Это значение можно найти в даташите

обратное напряжение диода

Для каждой марки диода оно разное

Если превысить это значение, то произойдет пробой, и диод выйдет из строя.

Падение напряжения на диоде Шоттки

Если же подать прямой ток на диод, то на диоде будет “оседать” напряжение. Это падение напряжения называется прямым падением напряжения на диоде. В даташитах обозначается как Vf , то есть Voltage drop.

прямое падение напряжения на диоде

Если пропустить через такой диод прямой ток, то мощность, которая будет на нем рассеиваться, будет определяться формулой:

где

P – мощность, Вт

Vf – прямое падение напряжение на диоде, В

I – сила тока через диод, А

Поэтому, одним из главных преимуществ диода Шоттки является то, что его прямое падение напряжения намного меньше, чем у простого диода. Следовательно, он будет меньше рассеивать тепло, или простым языком, меньше нагреваться.

Давайте рассмотрим один из примеров. Возьмем диод 1N4007. Его прямое падение напряжения составляет 0,83 Вольт, что типично для простого полупроводникового диода.

падение напряжение на диоде в прямом включении

В настоящий момент через него проходит сила тока, равная 0,5 А. Давайте рассчитаем его рассеиваемую мощность в данный момент. P=0,83 x 0,5 = 0,415 Вт.

Если рассмотреть этот случай через тепловизор, то можно увидеть, что его температура корпуса составила 54,4 градуса по Цельсию.

Теперь давайте проведем тот же самый эксперимент с диодом Шоттки 1N5817. Как вы видите, его прямое падение напряжения составило примерно 0,35 В.

падение напряжения на диоде Шоттки при прямом включении

При прохождении силы тока через диод Шоттки в 0,5 А, мы получим рассеиваемую мощность P=0,5 x 0,35 = 0,175 Вт. При этом тепловизор нам покажет, что температура корпуса уже будет 38,2 градуса.

Прямое падение напряжения можно также посмотреть и в даташитах. Например, прямое падение напряжения на диоде Шоттки 1N5817 можно найти из графика зависимости прямого тока от падения напряжения на диоде Шоттки

график зависимости прямого тока от напряжения

В нашем случае если следовать графо-аналитическому способу, то мы как раз получаем значение 0,35 В

Диод Шоттки в ВЧ цепях

Также диоды Шоттки обладают быстрой скоростью переключения. Это значит, что мы можем использовать их в высокочастотных (ВЧ) цепях.

Итак, возьмем генератор частоты и выставим синус частотой в 60 Гц

Возьмем диод 1N4007 и диод Шоттки 1N5817. Подключим их по простой схеме однополупериодного выпрямителя

и будем снимать с них показания

Как вы видите, оба они прекрасно справляются со своей задачей по выпрямлению сигнала на частоте в 60 Гц.

Но что будет, если мы увеличим частоту до 300 кГц?

Ого! Диод Шоттки более-менее справляется со своей задачей, что нельзя сказать о простом диоде 1N4007. Простой диод не может справиться со своей задачей не пропускать обратный ток, поэтому на осциллограмме мы видим отрицательный выброс

Отсюда можно сделать вывод: диоды Шоттки рекомендуется использовать в ВЧ цепях.

Обратный ток утечки

Но раз уж диоды Шоттки такие крутые, то почему бы их не использовать везде? Почему мы до сих пор используем простые диоды?

Если мы подключим диод в обратном направлении, то он будет блокировать прохождение электрического тока. Это верно, но не совсем. Очень маленький ток все равно будет проходить через диод. В некоторых случаях это не принимают во внимание. Этот маленький ток называется обратным током утечки. На английский манер это звучит как reverse leakage current.

Он очень мал, но имеет место быть.

Проведем простой опыт. Возьмем лабораторный блок питания, выставим на нем 19 В и подадим это напряжение на диод в обратном направлении

Замеряем ток утечки

обратный ток утечки диода

Как вы видите, его значение составляет 0,1 мкА.

Давайте теперь повторим этот же самый опыт с диодом Шоттки

обратный ток утечки диода Шоттки

Ого, уже почти 20 мкА! Ну да, в некоторых случаях это сущие копейки и ими можно пренебречь. Но есть схемы, где все-таки недопустим такой незначительный ток. Например, в схемах пикового детектора

схема пик детектора

В этом случае эти 20 мкА будут весьма значительны.

Но есть также еще один камень преткновения. С увеличением температуры обратный ток утечки возрастает в разы!

зависимость обратного тока утечки от температуры корпуса диода Шоттки

Но и это еще не все. Обратное напряжение для диодов Шоттки в разы меньше, чем для простых выпрямительных диодов. Это можно также увидеть из даташита. Если для диода 1N4007 обратное напряжение составляет 1000 В

То для диода Шоттки 1N5817 это обратное напряжение уже будет составлять всего-то 20 В

Поэтому, если это напряжение превысит значение, которое описано в даташите, мы в итоге получим:

Диоды Шоттки находят достаточно широкое применение. Их можно найти везде, где требуется минимальное прямое падение напряжения, а также в цепях ВЧ. Чаще всего их можно увидеть в компьютерных блоках питания, а также в импульсных стабилизаторах напряжения.

Также эти диоды нашли применение в солнечных панелях, так как солнечные панели генерируют электрический ток только в светлое время суток. Чтобы в темное время суток не было обратного процесса потребления тока от аккумуляторов, в панели монтируют диоды Шоттки

Шоттки в солнечных панелях

В компьютерной технике чаще всего можно увидеть два диода в одном корпусе

При написании данной статьи использовался материал с этого видео

Диод Шоттки был создан немецким физиком, инженером Вальтером Шоттки в 30-х годах прошлого века. Им было замечено, что электрическое поле влияет на свободные электроны, тем самым заставляя их вылетать из зоны проводимости. Буквально, это выглядит как выход из твердого тела. Эта зависимость получила свое название в честь ее первооткрывателя, то есть самого Вальтера Шоттки. В научной литературе подобное явление называется эффектом Шоттки.

В зоне контакта это приводит к появлению слоя, который содержит малое количество электронов и имеет выраженные вентильные свойства. Спустя некоторое время, они стали использоваться в электротехнике, в создании различного оборудования. В статье подробно описаны все особенности строения диода, сфера его применения и как он используется. В дополнении, статья содержит видеоролик и научную статья по выбранной теме.

Диод Шоттки.

Металл и полупроводник: особенности контакта

В контактной области полупроводниковых и металлических материалов эффект Шоттки приводит к образованию в полупроводнике слоя, сильно обеднённого электронами. Он обладает вентильными свойствами, присущими полупроводниковому p-n-переходу. Эта зона представляет собой преграду для носителей заряда, поэтому данные радиокомпоненты часто называют диодами с барьером Шоттки.

Элементы отличаются от обычных полупроводниковых вентилей следующими качествами:

  1. пониженное падение напряжения при прямом смещении;
  2. незначительная собственная ёмкость;
  3. малый обратный ток;
  4. низкое допустимое обратное напряжение.

При прямом смещении разность потенциалов на диоде Шоттки не превышает 0,5 В, тогда как на обычном выпрямительном вентиле падение напряжения составляет около 2-3 В. Это объясняется небольшим сопротивлением переходного участка между полупроводником и металлом. В таблице ниже представлены характеристики диодов Шоттки.

Хорошие частотные характеристики диодов Шоттки обусловлены отсутствием в переходной зоне неосновных носителей заряда. Из-за этого в контактной области не протекают обычные для чисто полупроводникового p-n-перехода процессы диффузии и рекомбинации дырок и электронов.

Следовательно, собственная ёмкость этого слоя стремится к нулю. Данное свойство делает диоды с барьером Шоттки предпочтительными для использования в высоко- и сверхвысокочастотных схемах, а также аппаратуре с импульсными режимами работы – всевозможных цифровых устройствах, системах управления электроникой и импульсных блоках питания.

Низковольтные диоды

Особенность диодов Шоттки состоит в том, что они являются низковольтными. Если приложенная разность потенциалов превышает некоторый допустимый уровень, то в соответствии с квантовыми законами происходит пробой, который в обычном полупроводниковом радиокомпоненте может быть туннельным, лавинным или тепловым. После первых двух диод восстанавливается и продолжает исправно работать. Тепловой пробой означает фатальную поломку.

Мост из диодов Шоттки

Однако чувствительность этих радиокомпонентов не всегда является их недостатком. Например, благодаря этой характеристике диоды с барьером Шоттки используются в особо чувствительных гетеродинах, которые получают способность обрабатывать радиосигналы очень малой мощности.

Основные параметры:

  1. Максимальное постоянное обратное напряжение;
  2. Максимальное импульсное обратное напряжение;
  3. Максимальный (средний) прямой ток;
  4. Максимальный импульсный прямой ток;
  5. Постоянное прямое напряжение на диоде при заданном прямом токе через него;
  6. Обратный ток диода при предельном обратном напряжении;
  7. Максимальная рабочая частота диода;
  8. Время обратного восстановления;
  9. Общая емкость диода.

В диодах с барьером Шоттки пробой всегда бывает только тепловым. Такова особенность металло-полупроводникового перехода. При большом обратном смещении элемент выходит из строя и нуждается в замене. Этим, кстати, объясняется сильная чувствительность диодов Шоттки к статическому электричеству – при их монтаже и обслуживании радиоаппаратуры с этими элементами необходимо заземлять спецодежду и инструменты.

Диод Шоттки на электросхеме

Производство диодов Шоттки

В качестве полупроводниковой составляющей используются стандартные материалы – кремний, германий и арсенид галлия. На них в процессе изготовления радиокомпонентов напыляются такие металлы, как золото, серебро, палладий, вольфрам. Именно эти элементы таблицы Менделеева обеспечивают достаточно высокий потенциальный барьер, определяющий функциональность диодов Шоттки. Германиевые радиокомпоненты показывают высокую устойчивость к изменению температурного режима, поэтому данный материал чаще кремния и арсенида галлия используется при производстве диодов для мощных схем питания. Зато кремниевые и галлиевые элементы демонстрируют лучшие частотные параметры.

Материал втему: Что такое кондесатор

Диоды Шоттки в блоках питания

В системных блоках питания, диоды Шоттки используются для выпрямления тока каналов +3.3В и +5В, а, как известно, величина выходных токов этих каналов составляет десятки ампер, что приводит к необходимости очень серьезно относиться к вопросам быстродействия выпрямителей и снижения их энергетических потерь. Решение этих вопросов способно значительно увеличить КПД источников питания и повысить надежность работы силовых транзисторов первичной части блока питания.

Будет интересно➡  Что такое динистор?

Итак, для уменьшения динамических коммутационных потерь и устранения режима короткого замыкания при переключении, в самых сильноточных каналах (+3.3В и +5В), где эти потери наиболее значительны, в качестве выпрямительных элементов используются диоды Шоттки. Применение диодов Шоттки в этих каналах обусловлено следующими соображениями:

  • Диод Шоттки является практически безынерционным прибором с очень малым временем восстановления обратного сопротивления, что приводит к уменьшению обратного вторичного тока и к уменьшению броска тока через коллекторы силовых транзисторов первичной части в момент переключения диода. Это в значительной степени снижает нагрузку на силовые транзисторы, и, как результат, увеличивает надежность блока питания.
  • Прямое падение напряжения на диоде Шоки также очень мало, что при величине тока 15–30 А обеспечивает значительный выигрыш в КПД.

Так как в современных блоках питания очень мощным становится и канал напряжения +12В, то применение диодов Шоттки в этом канале также дало бы значительный энергетический эффект, однако их применение в канале +12В нецелесообразно. Это связано с тем, что при обратном напряжении свыше 50В (а в канале +12В обратное напряжение может достигать величины и 60В) диоды Шоттки начинают плохо переключаться (слишком долго и при этом возникают значительные обратные токи утечки), что приводит к потере всех преимуществ их применения. Поэтому в канале +12В используются быстродействующие кремниевые импульсные диоды.

Устройства диода.

Хотя промышленностью сейчас выпускаются диоды Шоттки и с большим обратным напряжением, но их использование в блоках питания считается нецелесообразным по разным причинам, в том числе и экономического плана. Но в любых правилах имеются исключения, поэтому в отдельных блоках питания можно встретить диодные сборки Шоттки и в каналах +12В. В современных системных блоках питания компьютеров диоды Шоттки представляют собой, как правило, диодные сборки из двух диодов (диодные полумосты), что однозначно повышает технологичность и компактность блоков питания, а также улучшает условия охлаждения диодов. Использование отдельных диодов, а не диодных сборок, является сейчас показателем низкокачественного блока питания.

Будет интересно➡  Что такое полупроводниковые диоды и как они устроены

Проявление неисправностей диодов Шоттки

Как уже отмечалось, неисправность диодов Шоттки является одной из основных проблем современных блоков питания. Так по каким же предварительным признакам можно предположительно определить их неисправность? Таких признаков несколько. Во-первых, при пробоях и утечках вторичных выпрямительных диодов, как правило, срабатывает защита, и блок питания не запускается. Это может проявляться по-разному:

  • При включении блока питания вентилятор «дергается», т. е. совершает несколько оборотов и останавливается; после этого выходные напряжения полностью отсутствуют, т. е. источник питания блокируется.
  • После включения блока питания вентилятор «дергается» постоянно, на выходах блока питания можно наблюдать пульсации напряжения, т. е. защита срабатывает периодически, но блок питания при этом полностью не блокируется.
  • Признаком неисправности диодов Шоттки является чрезвычайно сильный разогрев вторичного радиатора, на котором они установлены.
  • Признаком утечки диодов Шоттки может являться самопроизвольное выключение блока питания, а значит и компьютера, при увеличении нагрузки (например, при запуске программ, обеспечивающих 100% загрузку процессора), а также невозможность запустить компьютер после «апгрейда», хотя мощность блока питания является достаточной.

Кроме того, необходимо осознавать, что в блоках питания с плохой и непродуманной схемотехникой, утечки выпрямительных диодов приводят к перегрузкам первичной цепи и к всплескам тока через силовые транзисторы, что может стать причиной их отказа. Таким образом, профессиональный подход к ремонту блоков питания, диктует обязательную проверку вторичных выпрямительных диодов при каждой замене силовых транзисторов-ключей первичной части блока питания.

Материал по теме: Что такое реле времени

Диагностика диодов Шоттки

Проверка и точная диагностика диодов Шоттки, на практике, является достаточно непростым делом, т. к. многое здесь определяется типом используемого измерительного прибора и опытом подобных измерений, хотя определить обычный пробой одного или двух диодов диодной сборки Шоттки не составляет особого труда. Для этого необходимо выпаять диодную сборку и проверить тестером оба диода согласно схеме на рис. 5. При подобной диагностике тестер необходимо установить в режим проверки диодов. Неисправный диод в обоих направлениях покажет одинаковое сопротивление (как правило, очень малое, т. е. покажет короткое замыкание), что и указывает на его непригодность для дальнейшего использования. Однако явные пробои диодных сборок в практике встречаются очень и очень редко.

В основном же, приходится иметь дело с утечками (причем зачастую с тепловыми утечками) диодов Шоттки. А вот утечки, выявить таким способом невозможно. «Утекающий» диод при проверках тестером в режиме «диод» является в подавляющем большинстве случаев полностью исправным. Гарантированную точность диагностики, на наш взгляд, позволяет дать только такой метод, как замена диода на заведомо исправный аналогичный прибор.

Но все-таки, выявить «подозрительный» диод можно попытаться с помощью методики, заключающейся в измерении сопротивления его обратного перехода. Для этого будем пользоваться не режимом проверки диодов, а обычным омметром.

Внимание! При использовании этой методики следует помнить, что разные тестеры могут давать отличающиеся показания, что объясняется различием самих тестеров.

Итак, устанавливаем предел измерений на значение [20К] и измеряем обратное сопротивление диода (рис. 6). Как показывает практика, исправные диоды на этом пределе измерений должны показывать бесконечно большое сопротивление.

Принцип работы диода Шоттки.

Если же при измерении выявляется некоторое, как правило, небольшое сопротивление (2–10 КОм), то такой диод можно считать «очень подозрительным» и его лучше заменить, или хотя бы проверить методом замены. Если же проводить проверку на пределе измерений [200К], то даже исправные диоды могут показывать в обратном направлении очень небольшое сопротивление (единицы и десятки кОм), поэтому и рекомендуется использовать предел [20К]. Естественно, что на больших пределах измерений (2 Мом, 20 Мом и т. д.) даже абсолютно исправный диод оказывается полностью открытым, т. к. его p-n переходу прикладывается слишком высокое (для диодов Шоттки) обратное напряжение. На пределе [200К] можно проводить проверку сравнительным методом, т. е. брать гарантированно-исправный диод, измерять его обратное сопротивление и сравнивать с сопротивлением проверяемого диода. Значительные отличия в этих измерениях будут указывать на необходимость замены диодной сборки.

Будет интересно➡  Что такое SMD светодиоды

Иногда встречаются ситуации, когда выходит из строя только один из диодов сборки. В этом случае неисправность также легко выявляется методом сравнения обратного сопротивления двух диодов одной сборки. Диоды одной сборки должны иметь одинаковое сопротивление. Предложенную методику можно дополнить еще и проверкой на термическую устойчивость. Суть этой проверки заключается в следующем. В тот момент времени, когда проверяется сопротивление обратного перехода на пределе измерений [20K] (см. предыдущий абзац), необходимо коснуться разогретым паяльником контактов диодной сборки, обеспечивая тем самым прогрев ее кристалла.

Неисправная диодная сборка практически мгновенно начинает «плыть», т. е. ее обратное сопротивление начинает очень быстро уменьшаться, в то время как исправная диодная сборка достаточно долго удерживает обратное сопротивление на бесконечно большом значении. Эта проверка очень важна, т. к. при работе диодная сборка сильно нагревается (не зря же ее размещают на радиаторе) и вследствие нагрева изменяет свои характеристики. Рассмотренная методика обеспечивает проверку устойчивости характеристик диодов Шоттки к температурным колебаниям, ведь увеличение температуры корпуса до 100 или 125°C увеличивает значение обратного тока утечки в сто раз (см. данные табл. 1).

Вот так можно попытаться проверить диод Шоттки, однако предложенными методиками не стоит злоупотреблять, т. е. не следует проводить проверки на слишком большом пределе измерений сопротивления и слишком сильно разогревать диод, т. к. теоретически, все это может привести к повреждению диода.

Кроме того, из-за возможности отказа диодов Шоттки под действием температуры, необходимо строго соблюдать все рекомендуемые условия пайки (температурный режим и время пайки). Хотя надо отдать должное производителям диодов, так как многие из них добились того, что монтаж сборок можно осуществлять при высокой температуре 250 °C в течение 10 секунд.

Заключение

В статье описаны все аспекты работы и устройства диода Шоттки. Еще больше информации можно найти в статье Устройство высоковольтных диодов Шоттки. В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.xprt.ru

www.eandc.ru

www.texnic.ru

sma_sod123flf_to277b.jpg

<center>Маломощные диоды Шоттки</center>

Маркировка диода Код маркировки Кол-во диодов Обратное напр. Прямой ток Время рас. Емкость диода Корпус диода Характеристики сборки диодов Склад Заказ
BAT54C WW1 2 шоттки 30В 200мА 5 нс 10 пФ SOT23
BAT54CW 43 2 Шоттки 30В 200мА 5 нс 10 пФ SOT323
BAT54S WV4 2 шоттки 30В 200мА 5 нс 10 пФ SOT23
BAT54SW 44 2 Шоттки 30В 200мА 5нс 10 пФ SOT323

Упаковка: В блистр-ленте на катушке диаметром 180 мм по 3000 диодных сборок в SOT323 и по 3000 в корпусе SOT23.

<center>Диоды Шоттки от 1 Ампера</center>

Маркировка диода Шоттки Макс. обратное напряжение Макс. ток Имп. прямой ток Макс. прямое напряжение Максимальный обратный ток Тип корпуса диода Характеристики диода Склад Заказ
SS14 40В 30А 0,5В 0,5мА при 25°С и 50мА при 100°С SMA
SS16 60В 30А 0,7В 0,5мА при 25°С и 50мА при 100°С SMA
S100 100В 30А 0,85В 0,5мА при 25°С и 20мА при 100°С SMA
MS120 200В 30А 0,9В 0,002мА при 25°С и 20мА при 125°С SMA
SR24 40В 50A 0,5В 0,5 мАпри 25°С и 20мА при 100°С SMA
SR26 60В 50A 0,7В 0,5 мАпри 25°С и 20мА при 100°С SMA
SX34 (SK34А) 40В 80А 0,5В 0,2мА при 25°С и 20мА при 100°С SMA
SX36 60В 80А 0,75В 0,1мА при 25°С и 20мА при 100°С SMA
SK34 40В 100А 0,5В 0,5 мА при 25°С и 20мА при 100°С SMC
MB310 (SK39 PanJit) 100В 100А 0,8В 0,05мА при 25°С и 20мА при 100°С SMC
MB510 (SK59 PanJit) 100В 100А 0,8В 0,05мА при 25°С и 10мА при 100°С SMC
SVC10120VB 120В 10А 200А 0,79В 0,010мА TO-277B

Упаковка: В блистр-ленте на катушке диаметром 330 мм по 5000 диодов Шоттки в TO-277B и MELF, по 3000 в SMC. В блистр-ленте на катушке диаметром 180 мм по 1800 диодов Шоттки в SMA.

<center>Быстрые диоды Шоттки</center>

Маркировка диода Шоттки Макс. обратное напряжение Макс. ток Имп. прямой ток Макс. прямое напряжение Максимальный обратный ток Тип корпуса диода Характеристики диода Склад Заказ
SS1060FL 60В 40А 0,7В 0,5мА SOD123FL
SS10100FL 100В 40А 0,85В 0,5мА SOD123FL
SS2060LHE 60В 50А 0,67В 0,1мА SOD123HE
SS20100FL 100В 50А 0,85В 0,5мА SOD123FL

Упаковка: В блистр-ленте на катушке диаметром 180 мм по 3000 диодов Шоттки вSOD123FL. sdip_1.jpg

<center>Мосты на диодах Шоттки</center>

Маркировка диодного моста Макс. обратное напряжение Действующие напряжение Макс. ток Имп. прямой ток Макс. падение напряжения Максимальный обратный ток Корпус диодного моста Характеристики диодного моста Склад Заказ
TS140S 40В 28В 30А 0,5В 100мкА при 40В TDI
TS240S 40В 28В 50А 0,5В 50мкА при 40В TDI

Упаковка: В блистр-ленте на катушке диаметром 180 мм по 1000 мостов на диодах Шоттки TS140S, TS240S.

Диоды Шоттки широко используются в низковольтных цепях вследствие малого падения на переходе структуры метал-полупроводник. Для работы в цепях с высоким напряжением созданы высоковольтные выпрямительные диоды со структурой, состоящей из двух полупроводников. Сборки из четырех диодов полупроводниковых структур позволяют изготавливать диодные мосты для работы в выпрямителях сетевых источников питания. В более высокочастотных преобразователях напряжений применяются импульсные диоды. Для защиты от перенапряжений цепей питания разработаны ограничительные диоды. Двухвыводная полупроводниковая структура способная излучать свет при включение в электрическую цепь получила название светоизлучающий диод, сокращено светодиод . Различают одноцветные светодиоды состоящие из одного полупроводникового кристалла и многоцветные из кристаллов излучающих свет различных цветов. Первые представлены в разделе LED светодиодов 0603 и 1206 вторые в разделе двухцветные и трёхцветные светодиоды. Диоды, работающие на обратном участке ВАХ, имеющие резкую зависимость тока от напряжения используются в качестве источников опорного напряжения и называются полупроводниковые стабилитроны.

Используемые источники:

  • https://www.ruselectronic.com/schottky-diode/
  • https://electroinfo.net/poluprovodniki/kak-rabotaet-diod-s-barerom-shottki.html
  • https://www.smd.ru/katalog/poluprovodnikovye_diody_smd/diody/diody_shottky/

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации