Андрей Смирнов
Время чтения: ~12 мин.
Просмотров: 0

Емкостные датчики — привлекательный вариант для бесконтактного измерения

Приложение напряжения переменного тока к смежным проводникам способствует дистанционному накапливанию на них положительных и отрицательных зарядов. Они создают вариативное электромагнитное поле, чувствительное ко многим внешним факторам, в первую очередь, к расстоянию между проводниками. Это свойство может использоваться для создания соответствующих емкостных датчиков, которые в состоянии управлять работой различных систем контроля и слежения.

Описание и назначение

Приложения напряжения разного знака, согласно закону Ампера, вызывает перемещение проводников, на которых находятся электрические частицы. При этом возникает переменный ток, который может быть обнаружен. Величина протекающего тока определяется емкостью, которая, в свою очередь, зависит от площади проводников и расстояния между ними. Более крупные и более близкие объекты вызывают больший ток, чем более мелкие и более отдаленные.

2.jpg

Емкость определяется следующими параметрами:

  • Характером не проводящей ток среды-диэлектрика, располагающейся между проводниками.
  • Размерами проводников.
  • Силой тока.

Пара таких поверхностей образует обкладки простейшего конденсатора, емкость которого прямо пропорциональна площади и диэлектрической проницаемости рабочей среды, и обратно пропорциональна расстоянию между обкладками. При постоянстве размеров обкладок и состава рабочей среды между ними любое изменение емкости будет являться результатом изменения расстояния между двумя объектами: зондом (датчиком) и отслеживаемой целью. Достаточно только преобразовать изменения емкости в значения сфокусированного электрического напряжения, которое будет управлять дальнейшими действиями прибора. Данные устройства, таким образом, предназначены для определения изменяющегося расстояния между объектами, а также для уточнения характера и качества поверхности измеряемых изделий.

3.jpg

Принцип работы емкостного датчика

Конструктивно такой прибор включает в себя:

  • Источник формирования эталонного напряжения.
  • Первичную цепь – зонд, поверхность и размеры которого определяются целями измерений.
  • Вторичную цепь, формирующую необходимый электрический сигнал.
  • Защитную цепь, обеспечивающую стабильность показаний датчика независимо от внешних возмущающих факторов.
  • Электронный усилитель, драйвер которого формирует сильный управляющий сигнал на исполнительные элементы, и обеспечивает точность срабатывания.

Емкостные датчики подразделяются на одно- и многоканальные. В последнем случае устройство может включать в себя несколько вышеописанных схем с разной формой зондов.

Драйвер электроники может быть настроен как ведущий или ведомый. В первом варианте он обеспечивает синхронизацию управляющих сигналов, поэтому используется преимущественно в многоканальных системах. Все приборы являются сенсорными, реагирующими исключительно на бесконтактные параметры.

Основными характеристиками рассматриваемых устройств считаются:

  • Размеры и характер цели – объекта зондирования. В частности, создаваемое ею электрическое поле должно иметь форму конуса, для которого габаритные размеры должны минимум на 30% превышать соответствующие размеры первичной цепи;
  • Диапазон измерений. Максимальный зазор, при котором показания устройства дают требуемую точность, составляют около 40% от полезной площади первичной цепи;
  • Точность измерений. Калибровка показаний обычно уменьшает диапазон, но повышает точность. Поэтому, чем меньше датчик по размерам, тем ближе он должен быть установлен к контролируемому объекту.

Характеристики датчиков не зависят от материала объекта, а также его толщины

Как конденсатор превращается в датчик

В данном случае причина и следствие меняются местами. Когда на проводник подается напряжение, электрическое поле образуется у каждой поверхности. В емкостном датчике измерительное напряжение подается на чувствительную зону зонда, причём для точных измерений электрическое поле от зондируемой области должно содержаться именно в пространстве между зондом и целью.

4.jpg

В отличие от обычного конденсатора, при работе емкостных датчиков электрическое поле может распространяться на другие предметы (или на отдельные их области). Результатом станет то, что система будет распознавать такое составное поле как несколько целей. Чтобы этого не произошло, задняя и боковые стороны чувствительной области окружают другим проводником, который поддерживается под тем же напряжением, что и сама чувствительная область.

При подаче эталонного напряжения питания, отдельная цепь подает точно такое же напряжение на защиту датчика. При отсутствии разницы в значениях напряжений между зоной чувствительности и защитной зоной, электрическое поле между ними отсутствует. Таким образом, исходный сигнал может исходить только от незащищенного фронта первичной цепи.

В отличие от конденсатора, на действие емкостного датчика будет влиять плотность материала объекта, поскольку при этом нарушается однородность создаваемого электрического поля.

Проблемы измерения

Для объектов сложной конфигурации достижение требующейся точности возможно при соблюдении ряда условий. Например, при многоканальном зондировании напряжение возбуждения для каждого зонда должно быть синхронизировано, иначе зонды будут мешать друг другу: один датчик попытается увеличить электрическое поле, в то время как другой будет стремиться уменьшить его, тем самым давая ложные показания. Поэтому существенным ограничивающим условием является требование, чтобы измерения проводились в тех же условиях, в которых был откалиброван датчик на предприятии-изготовителе. Если оценивать сигнал по изменению расстояния между зондом и целью, то все остальные параметры должны иметь постоянные значения.

Указанные сложности преодолеваются с помощью следующих приёмов:

  • Оптимизации размеров измеряемого объекта: чем меньше цель, тем больше вероятность распространения чувствительности поля по сторонам, в результате чего ошибка измерения увеличивается.
  • Проведения калибровки только по мишени с плоскими размерами.
  • Снижением скорости сканирования цели, в результате чего изменение характера поверхности не будет сказываться на итоговых показаниях.
  • Во время калибровки зонд должен располагаться эквидистантно поверхности цели (параллельно – для плоских поверхностей); это важно для датчиков повышенной чувствительности.

Тем не менее, есть проблемы, которые устранить невозможно. К их числу относится фактор теплового расширения/сужения материала, как датчика, так и контролируемого объекта. Второй фактор – электрический шум датчика, который вызывается дрейфом напряжения драйвера устройства.

Блок-диаграмма работы

Не являясь прямонаправленным, емкостной датчик измеряет некоторую емкость от объектов, которые постоянно присутствуют в окружающей среде. Поэтому неизвестные объекты обнаруживаются им как увеличение этой фоновой емкости. Она значительно больше, чем емкость объекта, и постоянно изменяется по величине. Поэтому рассматриваемые устройства используются для обнаружения изменений в окружающей среде, а не для обнаружения абсолютного присутствия или отсутствия неизвестного объекта.

При приближении цели к зонду величина электрического заряда или емкости изменяется, что и фиксируется электронной частью датчика. Результат может выводиться на экран или сенсорную панель.

Для производства измерения прибор подключается к печатной плате с сенсорным контроллером. Сенсоры оснащаются управляющими кнопками. Которыми можно включать в работу несколько зондов одновременно.

Сенсорные экраны используют датчики с электродами, расположенными в ряды и столбцы. Они находятся либо на противоположных сторонах основной панели, либо на отдельных панелях, которые разделены между собой диэлектрическими элементами. Контроллер циклически переключается между различными зондами, чтобы сначала определить, к какой строке касаются (направление Y), а затем к какому столбцу (направление X). Зонды часто изготавливаются из прозрачного пластика, что повышает информативность результата измерения.

Использование LC-фильтров

Специализированный аналоговый интерфейс преобразует сигнал от емкостного датчика в цифровое значение, пригодное для дальнейшей обработки. При этом периодически измеряется выходной сигнал датчика и генерируется сигнал возбуждения для зарядки пластины датчика. Частота дискретизации на выходе датчика относительно низкая — менее 500 выборок в секунду, но разрешение аналого-цифрового преобразования необходимо для захвата небольших различий в емкости.

В емкостном измерительном устройстве ступенчатая форма волны возбуждения заряжает электрод датчика. Впоследствии заряд передается в цепь и измеряется аналого-цифровым преобразователем.

Одной из проблем емкостного зондирования (как уже указывалось) является наличие постороннего шума. Эффективным способом повышения помехоустойчивости является модификация датчика путем подключения чувствительного к частоте компонента. В дополнение к элементу переменного конденсатора к датчику добавляются дополнительный конденсатор и индуктор для формирования резонансного контура. Узкополосный отклик позволяет ему подавлять электрический шум. При простоте LC- контура, его наличие обеспечивает ряд эксплуатационных преимуществ. Во-первых, благодаря присущим узкополосным характеристикам LC-резонатор обеспечивает отличную невосприимчивость к электромагнитным помехам. Во-вторых, если известен диапазон частот, где существует шум, то смещение рабочей частоты датчика может отфильтровать эти источники шума без использования внешних схем.

LC-фильтры чаще применяют в многоканальных датчиках

Сферы применения

Данные устройства используются в следующих целях:

  • Для обнаружения пластмасс и других изоляторов.
  • В системах сигнализации, при установлении факта перемещений по контролируемой территории.
  • Как компонент охранных устройств автомобилей.
  • Для определения чистоты поверхности материалов после механической обработки.
  • С целью определения уровня жидких или газообразных рабочих сред в закрытых резервуарах.
  • При установке систем автоматического включения/выключения светильников.

Во всех случаях емкостные датчики подлежат обязательной калибровке в заводских или иных специализированных условиях.

Схемы для изготовления своими руками

Для организации сенсорного управления емкостной датчик легко создать на основе, конденсатора и пары резисторов. При касании к проводам, происходит накапливание электрического заряда, регулируя величину которого, можно изменять время зарядки/разрядки. Такую схему можно применить для управления настольной лампой или иным светильником. В схеме должен присутствовать электронный компаратор, который будет сравнивать время зарядки конденсатора с эталонным (пороговым) значением, и выдавать соответствующий управляющий сигнал.

Электронные схемы с сенсорным контролем более интерактивны для пользователя, чем традиционные, поэтому могут эффективно применяться с целью переключения питания. Емкость конденсатора определяет уровень чувствительности: при повышении емкости чувствительность увеличивается, но для питания устройства потребуется больше мощности и меньшее время срабатывания. Для индикации можно применить обычный светодиод.

tormozedisonЭлектроникаДобавлено 3 комментария

Датчики приближения бывают емкостными, ультразвуковыми, оптическими. Автор Instrictables под ником Electro maker придумал простой оптический датчик приближения. Неудобен он лишь тем, что ток через инфракрасный светодиод никак не промодулирован, а фотодиод, соответственно, реагирует и на непрерывное излучение и требует экранировки от других источников света (например, трубкой). Схема прибора показана ниже:Мастер выбирает компоненты для самоделки. Инфракрасные светодиод и фотодиод:Постоянные резисторы:Подстроечный резистор:Операционный усилитель LM358:Светодиод видимого свечения:Панель для микросхемы (необязательна):Вместо светодиода можно подключить пищалку со встроенным генератором, тогда соответствующий резистор становится ненужным:Подойдёт и пищалка без встроенного генератора, если собрать внешний генератор звуковой частоты своими руками. На такой макетной плате типа perfboard места хватит:Если вы обошли несколько Фикс Прайсов, и во всех кончились вечные двигатели, придётся воспользоваться источником питания попроще:Установив компоненты на плату, мастер соединяет их по схеме пайкой:Фотодиод и оба светодиода, как и батарейку (или блок питания), необходимо подключить в указанной на схеме полярности, микросхему правильно ориентировать. Разработчику попались прозрачный инфракрасный светодиод и чёрный фотодиод, но бывает и наоборот. Определить, что из них чем является, помогут батарейка, резистор и любой телефон с камерой.Фотодиод и резистор на 10 кОм образуют делитель напряжения. При освещении фотодиода инфракрасными лучами, отражёнными, например, от руки, напряжение в точке подключения операционного усилителя к делителю возрастает. ОУ включён таким образом, что он работает как компаратор. Он сравнивает напряжение, поступающее с делителя, с напряжением, поступающим с подвижного контакта подстроечного резистора. Таким образом можно регулировать порог срабатывания датчика, с одной стороны, исключив ложные срабатывания, а с другой — обеспечив уверенное обнаружение приближения.Настроив порог срабатывания, мастер проверяет работу датчика:Трубки, защищающей фотодиод от боковой засветки, здесь для наглядности нет, без неё схема правильно работает только при неярком окружающем освещении.Небольшая домашка: что будет если поменять в делителе фотодиод и резистор местами, и одновременно поменять местами входы операционного усилителя? Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Емкостные датчики уровня – это универсальный бюджетный вариант детектирования граничных (максимального или минимального) значений уровня в разных отраслях промышленности, ЖКХ.

Они основываются на физическом принципе измерения ёмкости конденсатора, образованного сенсором датчика.

Простейшее такое устройство состоит из металлического чувствительного элемента (стержня зонда, провода) – электрода, расположенного в металлической трубке.

Особенность их применения в большей степени определяется и ограничивается диэлектрической проницаемостью тех материалов, которые предполагается контролировать.

Емкостными датчиками сложно измерять уровень продуктов с низкой диэлектрической проницаемостью, а также уровень материала, у которого диэлектрическая проницаемость зависит, например, от температуры этого продукта.

datchiki-emkostnye1.jpgЕмкостные датчикиуровня жидкости datchiki-emkostnye2.jpgЕмкостные датчикиуровня сыпучих

Емкостные датчики разделяют на сигнализаторы и уровнемеры. Различия в решаемых задачах:

  1. Емкостные уровнемеры – для непрерывного измерения уровня;
  2. Емкостные сигнализаторы – для контроля уровня и передачи дискретного сигнала о достижении предельного уровня измеряемого вещества.

Существуют радиочастотные емкостные датчики, и это уже более современная технология, которая появилась порядка 10 лет назад и в своей основе использует принцип изменения частоты генератора за счёт изменения диэлектрической проницаемости контролируемого материала.

Эти датчики более универсальны и могут использоваться как при больших, так и малых значениях диэлектрической проницаемости. Поэтому, если рассматривать особенности применения, есть смысл рассматривать их отдельно от классических датчиков.

chto-takoe-emkostnye-datchiki-urovnya1.png

В какой ёмкости проводить измерения с помощью ёмкостных датчиков

Такие датчики можно установить в любую металлическую ёмкость и без вспомогательных средств, просто устанавливается прибор, и всё работает.

Металлический резервуар может быть в качестве второго электрода для такого датчика. А для пластиковой ёмкости емкостный датчик уровня нужно брать с коаксиальным электродом, который будет являться ответной частью датчика, либо установить дополнительный электрод.

Измеряемая среда – вода и водные растворы, чистые жидкости без примесей

chto-takoe-emkostnye-datchiki-urovnya2.png

Относительно использования емкостных уровнемеров и сигнализаторов в водных растворах проблем никаких нет.

Оптимальное применение, естественно, вода, растворы на её основе. Емкостные уровнемеры и сигнализаторы дешёвые, удобные средства, достаточно надежные для жидкостей с постоянной и высокой диэлектрической проницаемостью.

Однако, если мы говорим об измерении уровня других жидкостей, то надо учесть, что они могут быть с пеной. Например, молоко.

Диэлектрическая проницаемость пены не соответствует диэлектрической проницаемости молока, потому что состоит из воздуха и молока, соответственно, и её диэлектрическая проницаемость будет приближаться больше к диэлектрической проницаемости воздуха, и обычный емкостной датчик на пену срабатывать не будет.

Поэтому, если стоит задача не упустить значение уровня совместно с какими-то особенностями, допустим, с той же самой пеной, то к контролю жидкости следует подходить с осторожностью с применением емкостных датчиков уровня, выполненных по классической схеме.

В таких процессах, где есть пенообразование или испарение, более уместно применение радиочастотных моделей.

chto-takoe-emkostnye-datchiki-urovnya3.png

Жидкости с примесью, масло

Относительно работы со смесями. (Например, изготавливают майонез, кетчуп или что-то в этом роде.)

Можно установить в емкости с миксером, но именно в исполнении с коаксиальным зондом, так как коаксиальный зонд повышает точность и не реагирует при этом на волнения во время перемешивания.

Нефть и её производные

chto-takoe-emkostnye-datchiki-urovnya4.png

Дальше поговорим по топливной промышленности, производству дизельного топлива, т.д.

Не рекомендуется применять на таких продуктах как дизельное топливо, бензин, керосин, у которых от температуры меняется показатель диэлектрической проницаемости. При низкой температуре он один, а при высокой температуре – другой.

Соответственно, в баке с дизельным топливом по факту уровень самого продукта меняться не будет, а датчик будет показывать, что изменения есть.

Сыпучие материалы

chto-takoe-emkostnye-datchiki-urovnya5.png

Тут уже возникают некоторые ограничения.

Если говорить об измерении/контроле уровня сыпучих материалов с помощью емкостных датчиков, то однозначно рекомендуем радиочастотные датчики. Ведь, как правило, у классических емкостных применение на сыпучие материалы возможно, но точность измерений зависит от многих факторов:

  • плотность продукта, так как там может быть минимальное количество воздуха между фракциями;
  • разная влажность продукта на разных уровнях, например, сверху и снизу резервуара;
  • зависимость от размера гранул, от среды;
  • не всегда постоянная диэлектрическая проницаемость;
  • высокая вероятность нагрева.

А вот применение радиочастотных датчиков уровня позволяет довольно чётко производить измерение сыпучих материалов как с изменяющейся (непостоянной) влажностью, так и с низкой диэлектрической проницаемостью.

Кроме того, радиочастотные измерительные приборы на основе емкостного принципа позволяют подстраиваться от наложений на сами зонды датчика в виде пыли, налипаний, грязи и т.д. То есть данные датчики не подвержены воздействию внешних факторов и с успехом справляются с возложенными на них задачами по контролю сыпучих материалов.

А вот переработка нефти – однозначно не подойдёт, если это не подтоварная вода или конденсат.

Поэтому, прежде чем выбрать емкостный датчик по конкретную задачу, стоит проконсультироваться со специалистами ООО «РусАвтоматизация».

Используемые источники:

  • https://prodatchik.ru/vidy/emkostnoj-datchik/
  • https://usamodelkina.ru/13049-prostoj-datchik-priblizhenija.html
  • https://rusautomation.ru/stati/chto-takoe-emkostnye-datchiki-urovnya

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации