Андрей Смирнов
Время чтения: ~15 мин.
Просмотров: 1

Жидкокристаллические дисплеи. История, принципы работы, преимущества и недостатки

Жидкокристаллический дисплей (ЖК-дисплей, ЖКД; жидкокристаллический индикатор, ЖКИ; англ. liquid crystal display, LCD) — дисплей на основе жидких кристаллов, а также устройство (монитор, телевизор) на основе такого дисплея.

Экраны LCD-мониторов (Liquid Crystal Display, жидкокристаллические мониторы) изготовлены из вещества (цианофенил), которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности оптических), связанных с упорядоченностью в ориентации молекул.

LCD-1-640x320.pngLCD

Основной их особенностью является возможность изменять ориентацию в пространстве под воздействием электрического поля. А если сзади матрицы поставить источник света, то, проходя через кристалл, поток будет окрашиваться в определенный цвет. Изменяя напряжённость электрического поля, можно изменять положение кристаллов, а значит и видимое количество одного из основных цветов. Кристаллы работают, как клапан или фильтр. Управление всей матрицей даёт возможность вывода на экран определённого изображения.

Жидкокристаллические материалы были открыты еще в 1888 году австрийским ученым Ф. Ренитцером, но только в 1930-м исследователи из британской корпорации Marconi получили патент на их промышленное применение.

В конце 1966 г. корпорация RCA продемонстрировала прототип LCD-монитора – цифровые часы. Значительную роль в развитии LCD-технологии сыграла корпорация Sharp. Она и до сих пор находится в числе технологических лидеров. Первый в мире калькулятор CS10A был произведен в 1964 г. именно этой корпорацией. В октябре 1975 г. уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 70-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки. Так, в 1976 г. Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы разрешением 160х120 пикселов.

Одним из самых качественных типов LCD-матриц является IPS. Именно IPS технология доминирует в мобильных устройствах, так как она обладает хорошей цветопередачей и, что особенно важно для смартфонов — хорошими углами обзора.

Ресурс работы ЖК телевизора (дисплея) около 60000 часов.

Светодиодный экран (LED screen, LED display) — устройство отображения и передачи визуальной информации (дисплей, монитор, телевизор), в котором каждой точкой — пикселем — является один или несколько полупроводниковых светодиодов (LED).

LED-640x320.jpgLED

LED — именно так сейчас принято сокращенно называть жидкокристаллическую (ЖК) панель со светодиодной (LED) подсветкой. Не так давно для подсветки ЖК-матрицы использовались люминисцентные лампы (CCFL), но сегодня их окончательно и бесповоротно вытеснили светодиоды. Матрица работает на просвет. По сути, каждый RGB-пиксель представляет собой «заслонку» (а фактически фильтр) для света, излучаемого светодиодами. Кстати, очень интересный вариант, когда в телевизоре используется «локальная» подсветка, то есть множество светодиодов установлены позади матрицы и могут освещать только определенную зону. Тогда достигается высокий показатель контрастности в одном кадре, однако первые такие модели буквально «шли пятнами». Впрочем, сегодня большинство LED-телевизоров имеют торцевую подсветку, когда диоды расположены по бокам (в торце). Такая конструкция и позволяет сделать предельно плоские, энергоэффективные и легкие видеопанели.

Чаще всего срок службы LED телевизоров принадлежит диапазону от 50 до 100 тысяч часов.

Органический светодиод (англ. organic light-emitting diode, сокр. OLED) — полупроводниковый прибор, изготовленный из органических соединений, эффективно излучающих свет при прохождении через них электрического тока.

Основная технология создания дисплеев основана на том, что органическая пленка на углеродной основе помещается между двумя проводниками, пропускающими электрический ток, из-за которого пленка излучает свет.

OLED-640x320.jpgOLED

Главное отличие этой технологии от  LED в том, что свет испускается каждым пикселем в отдельности, так что яркий белый или красочный цветной пиксель может находиться рядом с пикселем черного или совершенно другого цвета, и они не будут влиять друг на друга.

Это отличает их от традиционных ЖК-панелей, которые оснащаются специальной подсветкой, свет от которой проходит через слой пикселей.

К сожалению, между собой OLED пиксели отличаются не только цветом, но и рядом других характеристик — уровнем яркости, сроком службы, скоростью включения/выключения и прочими. Чтобы обеспечить относительно равномерные характеристики экрана в целом, производителям приходится идти на самые разные ухищрения: варьировать форму и размер светодиодов, размещать их в особом порядке, использовать программные трюки, регулировать яркость свечения с помощью ШИМ (то есть, грубо говоря, пульсацией), и так далее.

Причем технологии реализации самих матриц немного различаются. Так, в LG используется «сэндвич», а у Samsung — классическая RGB-схема. OLED можно гнуть вроде как без особых последствий. Поэтому вогнутые телевизоры также были построены на базе этой технологии.

5421.11.19

Русский геймер построил в Death Stranding огромное шоссе и стал героем интернета

Геймер по имениВ Илья БударинВ из России стал героем интернета, опубликовав на Reddit скриншот построенной им дороги в Death Stranding. Шоссе сконструировано из 40 секций и 84 тысяч материалов.В Пост самоотверженного строителя собрал почти 2,5 тысячи лайковВ на форуме. Сам герой оказался настолько скромным, что не понимает, почему о нём все пишут.

В далее

11224.11.19

Китаец случайно продал игрового персонажа стоимостью $1,5 млн за $500. Дело кончилось судом

Издание Abacus сообщило об одном любопытном случае, произошедшем в Китае. Один поклонник популярной MMORPG Justice Online вложил в развитие своего персонажа около полутора миллионов долларов (да, бывает и так), а затем его приятель случайно продал героя на аукционе за смехотворную цену. Разумеется, дело дошло до судебного разбирательства.

В далее

7125.11.19

Круче «Игры Престолов». В сети появились первые отзывы на сериал The Witcher

Перед запуском сериала The Witcher стриминговый сервис Netflix выдал журналистам и прочим медийным личностямВ доступ к нескольким эпизодам шоу, чтобы те подогрели интерес публики, и без того мучающейсяВ в томительном предвкушении. Что ж, похоже, создатели экранизации справились со своей задачей на отлично: лидеры мнений наперебой хвалят сериал.

В далее

26221.11.19

Объявлена российская цена Xiaomi Mi Note 10 с камерой на 108 Мп и аккумулятором ёмкостью 5260 мАч

Во время сегодняшней презентации в Москве компания Xiaomi объявила о выпуске на российском рынке нового Mi Note 10. Это первый смартфон с камерой на 108 Мп. Помимо продвинутых фотовозможностейВ он получил сканер отпечатков пальцев в экране, аккумулятор высокой ёмкости и модуль NFC.В 

В далее

14923.11.19

Alyx — только начало. Valve поделилась планами на следующие Half-Life

На этой неделе свершилось то, чего так долго ждали PC-геймеры всего мира: Valve анонсировала новую Half-Life. Ура? Ура! Но есть загвоздка: Alyx, виновница торжества, будет эксклюзивом для VR-устройств. Многих эта деталь расстроит, но надежда умирает последней — как оказалось, у подчинённых Гейба Ньюэлла есть планы на самый значимый сериал Valve.

В далее

Компьютеры26 октября 2000, 00:33Все, что вы давно хотели узнать о ЖК-мониторах, но боялись спросить.

Сейчас технологии плоскопанельных и жидкокристаллических мониторов являются наиболее перспективными. Хотя в настоящее время на долю ЖК-мониторов приходится лишь около 10% продаж во всем мире, этот сектор рынка является наиболее быстрорастущим (65% в год).

Принцип работы

Экраны LCD (Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества (цианофенил), которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности, оптических), связанных с упорядоченностью в ориентации молекул.

Как ни странно, но жидкие кристаллы старше ЭЛТ почти на десять лет, первое описание этих веществ было сделано еще в 1888 году. Однако долгое время никто не знал, как их применить на практике: есть такие вещества и все, и никому, кроме физиков и химиков, они не были интересны. Итак, жидкокристаллические материалы были открыты еще в 1888 году австрийским ученым Ф. Ренитцером, но только в 1930-м исследователи из британской корпорации Marconi получили патент на их промышленное применение. Впрочем, дальше этого дело не пошло, поскольку технологическая база в то время была еще слишком слаба. Первый настоящий прорыв совершили ученые Фергесон (Fergason) и Вильямс (Williams) из корпорации RCA (Radio Corporation of America). Один из них создал на базе жидких кристаллов термодатчик, используя их избирательный отражательный эффект, другой изучал воздействие электрического поля на нематические кристаллы. И вот, в конце 1966 года, корпорация RCA продемонстрировала прототип LCD — цифровые часы. Значительную роль в развитии LCD-технологии сыграла корпорация Sharp. Она и до сих пор находится в числе технологических лидеров. Первый в мире калькулятор CS10A был произведен в 1964 г. именно этой корпорацией. В октябре 1975-го уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 70-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки. Так, в 1976 году Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы разрешением 160х120 пикселов.

Работа ЖКД основана на явлении поляризации светового потока. Известно, что так называемые кристаллы-поляроиды способны пропускать только ту составляющую света, вектор электромагнитной индукции которой лежит в плоскости, параллельной оптической плоскости поляроида. Для оставшейся части светового потока поляроид будет непрозрачным. Таким образом поляроид как бы «просеивает» свет. Этот эффект называется поляризацией света. Когда были изучены жидкие вещества, длинные молекулы которых чувствительны к электростатическому и электромагнитному полю и способны поляризовать свет, появилась возможность управлять поляризацией. Эти аморфные вещества за их схожесть с кристаллическими веществами по электрооптическим свойствам, а также за способность принимать форму сосуда, назвали жидкими кристаллами.

Конструкция ЖК-дисплея

  Рисунок 1. Конструкция ЖК-дисплея.    

Плоскость поляризации

Основываясь на этом открытии и в результате дальнейших исследований стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения. Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в электронных часах, а затем их стали использовать в мониторах для портативных компьютеров. Сегодня, в результате прогресса в этой области, начинают получать все большее распространение LCD для настольных компьютеров.

  Рисунок 2. Плоскость поляризации.

Экран LCD представляет собой массив маленьких сегментов, называемых пикселями, которыми можно манипулировать для отображения информации. LCD имеет несколько слоев, где ключевую роль играют две панели, сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка. Слои собственно и содержат тонкий слой жидких кристаллов между собой (см. рис. 1). На панелях имеются бороздки, которые направляют кристаллы, сообщая им специальную ориентацию. Бороздки расположены таким образом, что они параллельны на каждой панели, но перпендикулярны между двумя панелями. Продольные бороздки получаются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается. Соприкасаясь с бороздками, молекулы в жидких кристаллах ориентируются одинаково во всех ячейках. Молекулы одной из разновидностей жидких кристаллов (нематиков) при отсутствии напряжения поворачивают вектор электрического (и магнитного) поля в световой волне на некоторый угол в плоскости, перпендикулярной оси распространения пучка. Нанесение бороздок на поверхность стекла позволяет обеспечить одинаковый угол поворота плоскости поляризации для всех ячеек. Две панели расположены очень близко друг к другу.

Плоскость поляризации

Жидкокристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидкокристаллические панели работают на отражение или на прохождение света). Как видно на рисунке 2, плоскость поляризации светового луча поворачивается на 90° при прохождении одной панели. При появлении электрического поля, молекулы жидких кристаллов частично выстраиваются вертикально вдоль поля, угол поворота плоскости поляризации света становится отличным от 90 градусов и свет беспрепятственно проходит через жидкие кристаллы (см. рис. 3).

Рисунок 3. Плоскость поляризации.

Поворот плоскости поляризации светового луча незаметен для глаза, поэтому возникла необходимость добавить к стеклянным панелям еще два других слоя, представляющих собой поляризационные фильтры. Эти фильтры пропускают только ту компоненту светового пучка, у которой ось поляризации соответствует заданному. Поэтому при прохождении поляризатора пучок света будет ослаблен в зависимости от угла между его плоскостью поляризации и осью поляризатора. При отсутствии напряжения ячейка прозрачна, так как первый поляризатор пропускает только свет с соответствующим вектором поляризации. Благодаря жидким кристаллам вектор поляризации света поворачивается, и к моменту прохождения пучка ко второму поляризатору он уже повернут так, что проходит через второй поляризатор без проблем (см. рис. 4а).

1 / 2

Конструкция ЖК-матрицы

Рисунок 4. Поляризация светового луча.

Первые LCD были очень маленькими, около 8 дюймов по диагонали, в то время как сегодня они достигли 15-дюймовых размеров для использования в ноутбуках, а для настольных компьютеров производятся LCD с диагональю 20-дюймов и более. Вслед за увеличением размеров следует увеличение разрешения, следствием чего является появление новых проблем, которые были решены с помощью появившихся специальных технологий, все это мы опишем далее. Одной из первых проблем была необходимость стандарта в определении качества отображения при высоких разрешениях. Первым шагом на пути к цели было увеличение угла поворота плоскости поляризации света в кристаллах с 90° до 270° с помощью STN технологии.

Технологии STN, DSTN, TFT, S-TFT

STN — сокращение от Super Twisted Nematic. Технология STN позволяет увеличить торсионный угол (угол кручения) ориентации кристаллов внутри LCD с 90° до 270°, что обеспечивает лучшую контрастность изображения при увеличении размеров монитора.

Часто STN ячейки используются в паре. Такая конструкция называется DSTN (Double Super Twisted Nematic), в которой одна двухслойная DSTN-ячейка состоит из 2 STN-ячеек, молекулы которых при работе поворачиваются в противоположные стороны. Свет, проходя через такую конструкцию в «запертом» состоянии, теряет большую часть своей энергии. Контрастность и разрешающая способность DSTN достаточно высокая, поэтому появилась возможность изготовить цветной дисплей, в котором на каждый пиксель приходится три ЖК-ячейки и три оптических фильтра основных цветов. Цветные дисплеи не способны работать от отраженного света, поэтому лампа задней подсветки — их обязательный атрибут. Для сокращения габаритов лампа находится с боку, а напротив нее зеркало (см. рис. 5), поэтому большинство LCD-матриц в центре имеют яркость выше, чем по краям (это не относится к настольным ЖК мониторам).

3773

Рисунок 5. Конструкция ЖК-матрицы.

Угол обзора ЖК-мониторов

Рисунок 6. Угол обзора ЖК-мониторов.

TFT

Рисунок 7. Конструкция TFT.

TFT обладают рядом преимуществ перед ЭЛТ-мониторами, среди которых — пониженное потребление энергии и теплоотдача, плоский экран и отсутствие следа от движущихся объектов. Последние разработки позволяют получить изображение более высокого качества, чем обычные TFT.

S-TFT

Рисунок 8. Конструкция S-TFT.

Совсем недавно специалистами компании Hitachi была создана новая технология многослойных ЖК-панелей Super TFT, которая значительно увеличила угол уверенного обзора ЖК панели. Технология Super TFT использует простые металлические электроды, установленные на нижней стеклянной пластине и заставляет молекулы вращаться, постоянно находясь в плоскости, параллельной плоскости экрана (см. рис. 8). Так как кристаллы обычной ЖК-панели поворачиваются к поверхности экрана оконечностями, то такие ЖКД более зависимы от угла зрения, чем ЖК-панели Hitachi с технологией Super TFT, В результате изображение на дисплее остается ярким и четким даже при больших углах обзора, достигая качества, сопоставимого с изображением на ЭЛТ-экране.

Японская компания NEC недавно объявила, что по качеству изображения ее LCD дисплеи вскоре достигнут уровня лазерных принтеров, перешагнув порог в 200 ppi, что соответствует 31 точке на квадратный мм, или шагу точек 0,18 мм. Как сообщили в NEC, применяемые сегодня многими производителями жидкие кристаллы TN (twisted nematic) позволяет строить дисплеи с разрешение до 400 точек на дюйм. Однако главным сдерживающим фактором в повышении разрешения является необходимость создания соответствующих светофильтров. В новой технологии «color filter on TFT» светофильтры, закрывающие тонкопленочные транзисторы, формируются с помощью фотолитографии на нижней стеклянной подложке. В обычных дисплеях светофильтры наносятся на вторую, верхнюю подложку, что требует очень точного совмещения двух пластин.

На прошедшей в 1999 году в США конференции «Society for information Display» было сделано несколько докладов, свидетельствующих об успехах в создании жидкокристаллических дисплеев на пластиковой подложке. Компания Samsung представила прототип монохромного дисплея на полимерном субстрате с диагональю 5,9 дюйма и толщиной 0,5 мм. Толщина самой подложки составляет около 0,12 мм. Дисплей имеет разрешение 480х320 точек и контрастность 4:1. Вес — всего 10 грамм.

Инженеры из Лаборатории кинотехники Университете Штуттгарта использовали не тонкопленочные транзисторы (TFT), а диоды MIM (металл-изолятор-металл). Последнее достижение этой команды — двухдюймовый цветной дисплей с разрешением 96х128 точек и коэффициентом контрастности 10:1.

Группа специалистов IBM разработала технологию производства тонкопленочных транзисторов с применением органических материалов, позволяющую изготавливать гибкие экраны для электронной книги и других устройств. Элементы разработанных IBM транзисторов напыляются на пластиковую подложку при комнатной температуре (традиционные LCD-дисплеи изготавливаются при высокой температуре, что исключает применение органических материалов). Вместо обычного диоксида кремния для изготовления затвора используется цирконат титоната бария (BZT). В качестве полупроводника применяется органическое вещество под названием пентацен (pentacene), представляющее собой соединение фенилэтиламмония с иодидом олова.

Для повышения разрешения LCD-экранов компания Displaytech предложила не создавать изображение на поверхности большого LCD-экрана, а вывести картинку на маленький дисплей высокого разрешения, а затем с помощью оптической проекционной системы увеличить ее до нужных размеров. При этом Displaytech использовала оригинальную технологию Ferroelectric LCD (FLCD). Она основана на так называемых кирально-смектических жидких кристаллах, предложенных для использования еще в 1980 г. Слой материала, обладающего ферроэлектрическими свойствами и способного отражать поляризованный свет с вращением плоскости поляризации, наносится на подающую управляющие сигналы CMOS-подложку. При прохождении отраженного светового потока через второй поляризатор возникает картинка из темных и светлых пикселов. Цветное изображение получается за счет быстрого чередования освещения матрицы красным, зеленым и синим светом.. На базе FLCD-матриц можно производить экраны большого размера с высокой контрастностью и качеством цветопередачи, с широкими углами обзора и малым временем отклика. В 1999 году альянс корпораций Hewlett-Packard и DisplayTech объявил о создании полноцветного микродисплея на базе технологии FLCD. Разрешение матрицы составляет 320х240 точек. Отличительными особенностями устройства являются малое энергопотребление и возможность воспроизведения полноцветного «живого» видео. Новый дисплей предназначен для использования в цифровых камерах, камкодерах, портативных коммуникаторах и мониторах для надеваемых компьютеров.

Развитием низкотемпературной технологии с использованием поликристаллического кремния LTPS занимается Toshiba. По словам представителей этой корпорации, они позиционируют новые устройства пока только как предназначенные для рынка мобильных устройств, не включая сюда ноутбуки, где господствует технология a-Si TFT. Уже выпускаются VGA-дисплеи размером 4 дюйма, а на подходе 5,8-дюймовые матрицы. Специалисты полагают, что 2 млн. пикселов на экране — это далеко не предел. Одной из отличительных черт данной технологии является высокая разрешающая способность.

По оценкам экспертов корпорации DisplaySearch, занимающейся исследованиями рынка плоских дисплеев, в настоящее время при изготовлении практически любых жидкокристаллических матриц происходит замена технологий: TN LCD (Twisted Nematic Liquid Crystal Display) на STN (Super TN LCD) и особенно на a-Si TFT LCD (amorphous-Silicon Thin Film Transistor LCD). В ближайшие 5—7 лет во многих областях применения обычные LCD-экраны будут заменены или дополнены следующими устройствами:

  • микродисплеи;
  • светоизлучающие дисплеи на базе органических материалов — LEP;
  • дисплеи на базе автоэлектронной эмиссии — FED (Field Emisson Display);
  • дисплеи с использованием низкотемпературного поликристаллического кремния LTPS (Low Temperature PolySilicon);
  • плазменные дисплеи PDP (Plasma Display Panel).

Преимущества и недостатки ЖК-мониторов

1 / 2

3777

Отсюда следует, что дальнейшее развитие ЖК-мониторов будет связано с повышением четкости и яркости изображения, увеличением угла обзора и уменьшением толщины экрана. Так, например, уже существуют перспективные разработки LCD-мониторов, выполненных по технологии с использованием поликристаллического кремния. Это позволяет, в частности, создавать очень тонкие устройства, поскольку микросхемы управления размещаются в этом случае непосредственно на стеклянной подложке дисплея. Кроме того, новая технология обеспечивает высокую разрешающую способность на сравнительно небольшом по размеру экране (1024×768 точек на 10,4-дюймовом экране).

Используемые источники:

  • https://php-web.info/articles/video-info/lcd-led-oled-display/
  • https://4pda.ru/2017/10/15/347387/
  • https://www.ferra.ru/review/computers/s4934.htm

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации