Андрей Смирнов
Время чтения: ~13 мин.
Просмотров: 13

Полезное и бесполезное увеличение микроскопа Leave a comment

Увеличение системы – важный фактор, в основе которого лежит выбор того или другого микроскопа в зависимости от решения необходимых задач. Все мы привыкли к тому, что проводить контроль полупроводниковых элементов необходимо на инспекционном микроскопе с увеличением 1000 и более крат, изучать насекомых можно, работая с 50 кратным стереомикроскопом, а луковые чешуйки, окрашенные йодом или зеленкой, мы изучали в школе на монокулярном микроскопе, когда понятие увеличения еще не было нам знакомо.

Но как интерпретировать понятие увеличения, когда перед нами находится цифровой или конфокальный микроскоп, а на объективах стоят значения 2000х, 5000х? Что это означает, будет ли 1000 кратное увеличение на оптическом микроскопе давать изображение, аналогичное цифровому 1000 кратному микроскопу? Об этом вы узнаете в этой статье.

Оптическое увеличение системы

Дополнительные оптические компоненты иногда имеют свой фактор увеличения, отличный от 1. В данном случае, коаксиальный осветитель (поз. 2) стереомикроскопа Olympus SZX16 имеет дополнительный увеличивающий фактор 1,5х.

К примеру, стереомикроскоп Olympus SZX-16 с окулярами 10х, объективом 2х, трансфокатором в позиции 8х и блоком коаксиального освещения с фактором 1,5х будет обладать общим оптическим увеличением 10х2х8х1,5 = 240 крат.

Принципиальная схема получения изображения на световом микроскопе. Окуляр увеличивает изображение, построенное объективом и формирует мнимое изображение.

Под оптическим увеличением (Г) в таком случае следует понимать отношение тангенса угла наклона луча, вышедшего из оптической системы в пространство изображений, к тангенсу угла сопряженного ему луча в пространстве предметов. Либо отношение длины, сформированного оптической системой изображения отрезка, перпендикулярного оси оптической системы, к длине самого отрезка

Геометрическое увеличение системы

В случае, когда у системы нет окуляров, а увеличенное изображение формируется камерой на экране монитора, к примеру, как на микроскопе Keyence VHX-5000, следует переходить к термину геометрического увеличения оптической системы. Геометрическое увеличение микроскопа – отношение линейного размера изображения объекта на мониторе к реальному размеру изучаемого объекта. Получить значение геометрического увеличения можно перемножив следующие величины: оптическое увеличение объектива, оптическое увеличение адаптера камеры, отношение диагонали монитора к диагонали матрицы камеры. К примеру, при работе на лабораторном микроскопе с объективом 50х, адаптером камеры 0,5х, камерой 1/2.5” и, выводя изображение на монитор ноутбука 14”, мы получим геометрическое увеличение системы = 50х0,5х(14/0,4) = 875х. Хотя оптическое увеличение при этом будет равно 500х в случае 10х окуляров.

Цифровые микроскопы, конфокальные профилометры, электронные микроскопы и другие системы, формирующие цифровое изображение объекта на экране монитора оперируют понятием геометрического увеличения. Не стоит путать это понятие с оптическим увеличением.

Разрешение микроскопа

Широко распространено заблуждение, что разрешение микроскопа и его увеличение связаны между собой жесткой связью – чем больше увеличение, тем более мелкие объекты мы сможем в него увидеть. Это не верно. Самым важным фактором всегда остается разрешение оптической системы. Ведь увеличение неразрешенного изображения не даст нам о нем новой информации.

Разрешение микроскопа зависит от числового значения апертуры объектива, а также от длины волны источника освещения. Как вы видите, параметра увеличения системы в этой формуле нет.

где λ – усредненная длина волны источника света, NA – числовая апертура объектива, R – разрешение оптической системы.

При использовании объектива с NA 0,95 на лабораторном микроскопе с галогенным источником (средняя длина волны порядка 500 нм) мы получаем разрешение около 300 нм.

Как видно из принципиальной схемы светового микроскопа, окуляры увеличивают действительное изображение объекта. Если, к примеру, повысить кратность увеличения окуляров в 2 раза (вставить в микроскоп окуляры 20х) – то общее увеличение системы удвоится, но разрешение при этом останется прежним.

Важное замечание

Предположим, что у нас есть два варианта построения простого лабораторного микроскопа. Первый построим, используя объектив 40х NA 0,65 и окуляры 10х. Второй же будет использовать объектив 20х NA 0,4 окуляры 20x.

Увеличение микроскопов в обоих вариантах будет одинаковое = 400х (простое перемножение увеличения объектива и окуляров). А вот разрешение в первом варианте будет выше, чем во втором, так как числовая апертура объектива 40х больше. К тому же не стоит забывать о поле зрения окуляров, у 20х этот параметр на 20-25% ниже.

Полезное и бесполезное увеличение микроскопа один из принципиальных вопросов для любого микроскописта. Тем более сегодня на рынке представлено великое множество оптических микроскопов, порой с большими увеличениями от 1.000 крат и выше. Насколько эффективно может быть такое увеличение, например, у школьных моделей? Стоит ли гнаться за большими и максимальными увеличениями? В каких случаях это целесообразно. И где больше производители использую маркетинговых уловок?

Разрешающая способность оптического микроскопа (D) зависит от длины волны света (λ), числовой апертуры объектива (a) и здесь работает следующая формула D = λ ÷ a. Исходя из данной формулы можно заметить следующее – чем больше апертура объектива и короче длинна волны используемого для освещения препарат света, тем большая разрешающая способность всей оптической системы, а это значит, можно будет выявить более тонкие структуры у исследуемого образца.

На практике большинство школьных, учебных и лабораторных микроскопов рассчитаны на работу в видимой, средней длиной волны λ = 0.5 мкм, что соответствует разрешению 0.4 мкм для самого “сильного” объектива 100Х (апертура 1.25), например, у микроскопа Микромед Р-1 (лабораторный микроскоп начального уровня) или разрешению 0.8 мкм для школьного микроскопа – объектив 40Х, апертура 0.65 (например, модель Микромед C 12).

Минимальное и максимальное полезное увеличение микроскопа

При стандартной длине тубуса (160 мм) увеличение микроскопа определяется по формуле = (кратность объектива) × (кратность окуляра). Т.е. если Вы в данный момент времени поставили объектив с кратностью 10Х и окуляр с кратностью 16Х, общее увеличение микроскопа составит 160Х.

1_sky-route_poleznoe_uvelichenie_microscopa.jpg

Рис 1. Обозначения стандартного объектива микроскопа.

Для максимального использования разрешающей способности конкретного объектива Вы должны подобрать такое увеличение, которое будет находится в пределах 500-1000 кратного значения числовой апертуры. Т.е., чтобы определить минимальное полезное увеличение микроскопа при работе с конкретным объективом, Вам нужно 500 умножить на числовую апертуру, указанную на объективе или для определения максимального допустимого увеличения, просто умножьте числовую апертуру на 1000.

2_sky-route_poleznoe_uvelichenie_microscopa.jpg

Рис 2. Минимальные и максимальные значения увеличений микроскопов при использовании наиболее распространенных объективов.

Работа на увеличениях, меньше указанных значений не позволит реализовать разрешающую способность объектива в полной мере, а использование увеличений больше допустимых нецелесообразно, т.к. не выявит новых деталей объекта (при этом изображение может быть более темных и менее четким и контрастным).

Именно по этой причине будьте внимательны при выборе микроскопа и дополнительных окуляров к ним. Не нужно гнаться за максимальными увеличениями, т.к. положительного эффекта это не приносит – Вы не сможете различить больше новых деталей, а качество изображения при этом снижается. Практически все школьные микроскопы имеют в комплекте 40Х объектив с числовой апертурой 0.65, что соответствуем максимальному полезному увеличению в 650Х, а линза Барлоу, если она идет в комплекте (заявленное увеличение такого микроскопа достигает 1.280Х или 800Х) – бесполезна. Линза Барлоу в школьных микроскопах реально вносит свои аберрации, ухудшающие качество изображения. Мы проводили много раз эксперимент на разных школьных микроскопах с линзой Барлоу – без нее тот же микроскоп показывает четкую картинку со своими родными окулярами, с ней же изображение становиться не таким детализованным, скорее размытым. Т.е. во многих школьных микроскопах производители используют маркетинговых ход – покупатель видит большие цифры и покупает.

В некоторых случаях, при профессиональном применении микроскопа, разумно использовать увеличения, больше предельно допустимого, например, при измерениях и подсчетах.

Используемая литература:

Ромейс Б. – Микроскопическая техника – 1953

Статья подготовлена Иваненко Романом

5282-34.jpg

Как и многие другие технологические устройства, микроскопы имеют очень долгую историю. Самые ранние микроскопы содержали простое увеличительное стекло с малой мощностью (до 10 раз). Их использовали для наблюдения за маленькими насекомыми, такими как блохи.

Ранние версии оптических микроскопов были разработаны в конце 15 века. Хотя изобретатель неизвестен, за эти годы было сделано несколько заявлений. Использование микроскопов для исследования органических тканей появилось только в 1644 году.

Сегодня у нас есть микроскопы, которые могут обеспечить разрешение в 50 пикометров с увеличением до 50 миллионов раз, что достаточно для наблюдения ультраструктуры различных неорганических и биологических образцов.

Современные микроскопы можно классифицировать по-разному. Один из способов сгруппировать их — это способ их взаимодействия с образцами для создания изображений. Основываясь на том же факторе, мы перечислили 5 основных типов микроскопов и их использование.

1. Оптические микроскопы

Оптические микроскопы являются наиболее распространенными микроскопами, которые используют свет, чтобы пройти через образец для генерации изображений. Они могут иметь очень простую конструкцию, хотя сложные оптические микроскопы направлены на повышение разрешения и контрастности образца.

В дальнейшем их можно подразделить на два типа: простые и сложные микроскопы. Простой микроскоп использует одну линзу (например, увеличительное стекло) для увеличения, в то время как сложные микроскопы используют несколько линз для увеличения образца.

Они часто оснащены цифровой камерой, поэтому образец можно наблюдать с помощью компьютера. Это позволяет провести глубокий анализ микроскопического изображения.

Оптические микроскопы могут обеспечивать увеличение до 1250 раз с теоретическим пределом разрешения 0,250 микрометров. Тем не менее, развитие сверхразрешенной флуоресцентной микроскопии в последнее десятилетие привело оптическую микроскопию в наноразмерность.

5282-29.jpg

Варианты оптического микроскопа

  1. Стереомикроскоп : предназначен для наблюдения образцов в 3D при небольшом увеличении.
  2. Сравнительный микроскоп : используется для исследования бок о бок образцов.
  3. Поляризационный микроскоп : используется в оптической минералогии и петрологии для выявления минералов и горных пород в тонких срезах.
  4. Двухфотонный микроскоп : позволяет получать изображения живых тканей глубиной до 1 мм.
  5. Инвертированный микроскоп : исследует образец снизу; обычно используется для металлографии и клеточных культур в жидкости.
  6. Эпифлуоресцентный микроскоп : разработан для анализа образцов, содержащих флуорофоры.

Применение

Основные оптические микроскопы часто встречаются в классах и дома. Сложные широко используются в фармацевтических исследованиях, микробиологии, микроэлектронике, нанофизике и минералогии.

Они часто используются для исследования тканей с целью изучения проявлений заболеваний. В клинической медицине исследование биопсии или хирургического образца относится к гистопатологии.

2. Электронные микроскопы

Электронный микроскоп использует пучок ускоренных электронов для получения изображения образца. Точно так же, как оптические микроскопы используют стеклянные линзы, электронные микроскопы используют фасонные магнитные поля для создания систем электронно-оптических линз.

Поскольку длина волны электрона может быть намного короче, чем у фотонов, электронные микроскопы имеют более высокую разрешающую способность и увеличение, чем обычные оптические микроскопы. Они могут выявить структуры объектов размером с пикометр.

Первый электронный микроскоп, который превысил разрешение, достигнутое с помощью оптического микроскопа, был разработан немецким физиком Эрнстом Руской в ​​1933 году. С тех пор были сделаны многочисленные улучшения для дальнейшего улучшения увеличения и разрешения микроскопа.

Современные электронные микроскопы способны увеличивать образцы до 2000000 раз, однако они все еще полагаются на прототип Руска (разработанный в 1931 году) и его связь между разрешением и длиной волны.

Электронные микроскопы имеют некоторые ограничения: они дороги в изготовлении, обслуживании и должны быть размещены в стабильных средах, таких как системы подавления магнитного поля. Также объекты должны просматриваться в вакууме.

5282-30.jpg
Современный просвечивающий электронный микроскоп | Предоставлено: Дэвид Морган из Кембриджа, Великобритания.

Два основных типа электронного микроскопа

1. Просвечивающий электронный микроскоп: используется для наблюдения за тонкими образцами, через которые могут проходить электроны, создавая проекционное изображение. Он может захватывать мелкие детали размером с колонку атомов.

В этом случае образец обычно представляет собой очень тонкий срез (нанометров), и изображение создается в результате взаимодействия образца с электронами при прохождении пучка через образец.

Современные аппаратные корректоры могут помочь этому микроскопу достичь высокого разрешения в 50 пикометров с увеличением, превышающим 50 000 000 раз.

2. Сканирующий электронный микроскоп: генерирует изображения образца путем сканирования его поверхности сфокусированным пучком электронов. Электроны взаимодействуют с атомами в образце и генерируют сигналы, которые содержат данные о составе образца и топографии поверхности.

Поскольку этот тип микроскопии отображает только поверхность (не внутреннюю часть) образцов, он обеспечивает низкое разрешение изображения по сравнению с просвечивающей электронной микроскопией. Тем не менее, он может генерировать хорошее качество трехмерных изображений поверхности образца.

Вещи, которые вы можете наблюдать с помощью сканирующего электронного микроскопа, включают элементы на головке булавки, волосковые клетки внутреннего уха человека и поверхность глаза мухи-мухи.

Применение

Электронные микроскопы широко используются для изучения ультраструктуры различных неорганических и биологических образцов, таких как металлы, кристаллы, образцы биопсии, крупные молекулы, клетки и микроорганизмы.

Современные электронные микроскопы оснащены специальными цифровыми камерами и фрейм-грабберами для записи структуры образца и создания электронных микрофотографий.

Они часто используются в промышленных целях (для помощи в процессе производства) и в криминалистике (для предоставления доказательств в преступных и юридических целях).

3. Сканирующий зондовый микроскоп

Сканирующая зондовая микроскопия была открыта в 1981 году для изображения поверхности образца на атомном уровне. Он использует физический зонд для сканирования образца и формирования сильно увеличенных изображений.

Исходя из цели исследования, в сканирующей зондовой микроскопии используются разные методы.

Например, прибор может быть установлен в «режим постукивания», при котором кантилевер колеблется так, что наконечник периодически касается поверхности образца. Это в основном используется для изучения образцов с мягкими поверхностями.

В другом способе микроскоп может быть установлен в «режим контакта», при котором между острием кантилевера и поверхностью образца прикладывается постоянная сила. Этот режим быстро создает изображения поверхности.

В отличие от методов электронной микроскопии, образцы не требуют помещения в определенную вакуумную среду. Вместо этого они могут отображаться на воздухе при комнатном давлении и температуре или внутри жидкого реакционного сосуда. Однако, они часто не полезны для анализировать жидкост-жидкостные или твердотельные интерфейсы.

5282-31.jpg
Современный сканирующий зондовый микроскоп

Распространенные типы сканирующих зондовых микроскопов

А) Атомно-силовой микроскоп: имеет разрешение порядка долей нанометра, что позволяет получать изображения практически любого типа поверхности, включая стекло, полимеры и биологические образцы.

B) Сканирующая оптическая микроскопия ближнего поля: может достигать производительности пространственного разрешения сверх классического дифракционного предела. Он может быть использован для изучения всех проводящих, непроводящих и прозрачных образцов.

C) Сканирующие туннельные микроскопы: могут достигать бокового разрешения 0,1 нм и глубины 0,01 нм. Образцы могут быть отображены в экстремальных условиях, при температурах от почти абсолютного нуля до более 1000 ° C.

Кроме того, сканирующий туннельный микроскоп был первым микроскопом, который использовал квантовые концепции , которые проложили путь к развитию квантового микроскопа запутывания и фотоионизационного микроскопа.

Применение

Сканирующие зондовые микроскопы используются в широком спектре естественных наук, включая медицину, клеточную и молекулярную биологию, физику твердого тела, химию полимеров и полупроводниковую науку и технику.

Например, в молекулярной биологии этот метод микроскопии используется для анализа структуры и механических характеристик белковых комплексов и сборок. В клеточной биологии он используется для определения взаимодействия между определенными клетками и различения нормальных клеток и раковых клеток на основе твердости клеток.

В физике твердого тела он используется для изучения взаимодействия между соседними атомами и изменений в расположении атомов посредством атомных манипуляций.

4. Сканирующие акустические микроскопы

Сканирующий акустический микроскоп измеряет изменения акустического импеданса с помощью звуковых волн. Он в основном используется для неразрушающей оценки, анализа отказов и выявления дефектов в недрах материалов, в том числе обнаруженных в интегральных микросхемах.

Этот тип микроскопа был впервые разработан в 1974 году в микроволновой лаборатории Стэнфордского университета. С тех пор были сделаны многочисленные улучшения для повышения его точности и разрешения.

Микроскоп непосредственно фокусирует звук от датчика в маленькой точке на образце. Звук, падающий на объекты, либо поглощается, либо рассеивается под разными углами. Эти рассеянные импульсы, распространяющиеся в определенном направлении, дают полезную информацию об образце.

Разрешение образца изображения либо ограничено шириной звукового луча (зависит от частоты звука), либо физическим разрешением сканирования.

В отличие от обычных оптических микроскопов, которые позволяют наблюдать поверхность образца, акустические микроскопы фокусируются на определенной точке и получают изображения из более глубоких слоев. Кроме того, они обеспечивают более точные результаты и увеличивают объем данных, сохраняя при этом целостность образца.

5282-32.jpg
Сканирующий акустический микроскоп Sonix HS 1000

Применение

Многие компании используют этот тип микроскопии в аналитических лабораториях для определения качества своих электронных компонентов. Производители также используют его для контроля качества, квалификации поставщиков, тестирования надежности продукции, а также для исследований и разработок.

В биологии эти микроскопы предоставляют полезные данные о физических силах, удерживающих структуры в определенных формах, таких как эластичность клеток и тканей. Это чрезвычайно полезно при изучении процесса подвижности клеток (способность организма самостоятельно передвигаться, используя метаболическую энергию).

5. Рентгеновский микроскоп

Рентгеновские микроскопы генерируют увеличенные изображения объектов, используя электромагнитное излучение в мягком луче. Они способны выдавать 3D-изображение компьютерной томографии относительно больших образцов с высоким разрешением.

Для идентификации рентгеновских лучей, проходящих через образец, используется детектор с зарядовой связью. Поскольку рентгеновские лучи легко проникают сквозь вещество, микроскопы этого типа могут отображать внутреннюю часть образцов, непрозрачных для видимого света.

Современные рентгеновские микроскопы позволяют наблюдать различные образцы, в том числе те, которые имеют низкий контраст поглощения и более плотный материал, например керамические композиты. Чтобы достичь этого, микроскоп изменяет длину волны рентгеновского излучения, что увеличивает контраст или проникновение.

Его разрешение лежит между оптической микроскопией и электронной микроскопией. В отличие от традиционных электронных микроскопов, рентгеновские микроскопы могут отображать толстые биологические материалы в их естественном состоянии.

5282-33.jpg
Рентгеновский микроскоп ZEISS Xradia 510 Versa

Применение

Рентгеновская микроскопия оказалась чрезвычайно полезной в области медицины и материаловедения. Он был использован для анализа структуры различных тканей и образцов биопсии.

В области материаловедения рентгеновские микроскопы могут определять структуру кристалла вплоть до размещения отдельных атомов внутри его молекул. Он также обеспечивает неразрушающий, неинвазивный метод поиска дефектов в трех измерениях.

Используемые источники:

  • https://dmicro.ru/articles/uvelichenie-mikroskopa/
  • https://sky-route.ru/poleznoe-i-bespoleznoe-uvelichenie-mikrsokopa
  • https://new-science.ru/5-raznyh-tipov-mikroskopov-i-ih-primenenie/

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации