Андрей Смирнов
Время чтения: ~15 мин.
Просмотров: 27

Простая схема регулируемого блока питания на транзисторах с защитой от перегрузки по току и КЗ. _v_

Здравствуйте, друзья! Лабораторный блок питания является прибором первой необходимости для начинающего радиолюбителя и по этому я хочу представить вашему вниманию свою новую самоделку. Очень простой и надежный лабораторный блок питания с регулятором напряжения от 1,5 до 30 вольт, максимальной силой тока 5А и защитой от короткого замыкания с звуковой сигнализацией. Источником питания для приведенной ниже схемы может служить любой трансформатор или импульсный блок питания, например от ноутбука с выходным напряжением от 16 до 40 вольт и максимальной силой тока до 5А.

Схема лабораторного блока питания 1,5-30В 5А с защитой от КЗ

Скачать схему лабораторного блока питания 5А 

Как работает блок питания?

Напряжение от источника питания проходя через диодный мост Br1 выпрямляется и поступает на регулятор напряжения состоящий из транзистора Т1, резистора R1 и переменного резистора Р1. На выходе из регулятора получается 12 вольт. Этим напряжением постоянно питается вентилятор, реле К1 и вольт амперметр V/A1.

В режиме ожидания от диодного моста Br1 через постоянно замкнутые контакты реле К1 подается напряжение на звуковой сигнализатор короткого замыкания в результате чего в бипере SP1 раздается постоянный звуковой сигнал, что свидетельствует о исправной системе защиты от короткого замыкания.

При кратковременном нажатии кнопки START S1 подается напряжение через резистор R2 на базу транзистора Т2 в результате, чего транзистор Т2 открывается и подает питание на обмотку реле К1, контакты реле К1 переключаются и происходит самоблокировка реле К1.  В момент срабатывания реле К1 отключается звуковой сигнализатор короткого замыкания, а в место него подключается регулятор напряжения на микросхеме LM338T. Далее напряжение через шунтирующий диод D2 поступает на выход блока питания. Регуляция напряжения на выходе из блока питания выполняется переменным резистором Р2. Контроль напряжения и силы тока осуществляется вольт амперметром V/A1. В случае короткого замыкания происходит падение напряжения на базе транзистора Т2, транзистор закрывается в следствии чего, контакты реле переключаются. Нагрузка отключается, а на звуковой сигнализатор короткого замыкания подается питание и раздается звуковой сигнал. После устранения короткого замыкания следует кратковременно нажать кнопку START S1 и блок питания снова перейдет в рабочий режим. И так может продолжаться до бесконечности.

Список радиодеталей для сборки лабораторного блока питания:

  • Источник питания любой подходящий трансформатор или импульсный блок питания от 16 до 40 вольт
  • Транзисторы Т1, Т2 TIP41C, КТ819Г и их аналоги
  • Микросхема LM338T на 5А или LM350T на 3А, LM317T на 1,5А все зависит от мощности источника питания
  • Микросхема NE555
  • Диодный мост Br1 любой не менее 6А можно заменить диодами.
  • Диоды любые D1 0,5А, D2 от 1,5А до 10А зависит от нагрузки возможно параллельное соединение диодов
  • Конденсаторы С1, С2, С4 100нф, С3 470мкф 35в, С5 1000мкф 50в
  • Резисторы R1, R4 1k, R2 5,1k, R3 270, R5 10k, R6 330, R7 150, R8 200
  • Переменные резисторы Р1 10К, Р2 5К
  • Реле SRD12VDC-SL-C  12В 10А
  • Кнопка START S1 без фиксации на замыкание
  • Вентилятор М1 от компьютера
  • Бипер SP1 от компьютера или маленький динамик
  • Вольт амперметр китайский универсальный с Alliexpress

Внимание: При сборке лабораторного блока питания не изменяйте номиналы конденсаторов С1, С4, С5 иначе не будет срабатывать система защиты от короткого замыкания!!!

Цоколевка применяемых транзисторов

Возможно вам это пригодиться…

Все детали следует разместить на печатной плате изготовленной по лазерно-утюжной технологии.

Печатная плата лабораторного блока питания 1,5-30В 5А с защитой от КЗ

Скачать печатную плату лабораторного блока питания 5А в формате lay 

Тональность сигнализатора изменяется резистором R4 и конденсатором С2. Громкость регулируется подбором резистора R6. Порог срабатывания системы защиты от короткого замыкания подбирается резистором R2. Напряжение на выходе из блока питания изменяется переменным резистором Р2 его ручка выведена на лицевую панель блока питания.

В процессе работы транзистор Т1, микросхема LM338T и диодный мост будут сильно нагреваться, поэтому их следует установить на радиатор, перед установкой обязательно изолировать от радиатора. Как это сделать читайте здесь: Как изолировать транзисторы от радиатора?

Для контроля напряжения и силы тока лучше всего установить вот такой универсальный вольт амперметр.

Кстати, его надо откалибровать. С обратной стороны прибора находится два маленьких переменных резистора один отвечает за вольтаж, второй за ампераж. Делаем так, подключаем параллельно к выходу блока питания мультиметр, включаем в режим вольтметра и сравниваем показания приборов, если показания не соответствуют крутим переменный резистор в разные стороны, чтобы добиться наиболее точных показаний прибора. Чтобы откалибровать амперметр переключите мультиметр в режим амперметра. К блоку питания подключите лампочку последовательно с мультиметром и сверьте показания приборов.

Все компоненты лабораторного блока питания легко помещаются в корпусе от компьютерного блока питания.

Так выглядит готовое устройство. Для чего я установил два выключателя и кнопку на крыше блока питания? Красный выключатель сеть, он отключает трансформатор от сети 220В. Синяя кнопка START предназначена для перевода блока питания в рабочий режим.

Черный выключатель линия, чтобы отключать потребители от блока питания без откручивания проводов от разъемов. Справа два разъема типа «Banana» для подключения потребителей. На передней панели находится переменный резистор Р2 для регулировки выходного напряжения. И очень важная деталь это универсальный вольт амперметр.

В своем лабораторном блоке питания я установил трансформатор на 1,5 ампера. Его мощности вполне хватает, чтобы зарядить небольшой 12 вольтовый аккумулятор от бесперебойника емкостью 7А, его я установил на аккумуляторный шуруповерт. Если вы хотите собрать мощное зарядное устройство для автомобильного аккумулятора своими руками, тогда надо увеличить мощность лабораторного блока питания до 10 ампер.

Как увеличить мощность лабораторного блока питания до 10 ампер?

Чтобы увеличить мощность лабораторного блока питания достаточно параллельно микросхеме LM388T подключить мощный 12 амперный транзистор MJE13009. И соответственно заменить источник питания на более мощный трансформатор или импульсный блок питания. Схема будет выглядеть так.

Схема лабораторного блока питания 1,5-30В 10А с защитой от КЗ

Скачать схему лабораторного блока питания 10А 

Печатная плата будет выглядеть так.

Печатная плата лабораторного блока питания 1,5-30В 10А с защитой от КЗ

Скачать схему лабораторного блока питания 10А в формате lay 

А для любителей чего либо измерять, я решил снять пару осциллограмм  в разных режимах работы блока питания.

На этой осциллограмме напряжение на выходе из блока питания снижено до 12 вольт.

Осциллограмма трансформаторного лабораторного блока питания. Напряжение на выходе 12 вольт.

А здесь максимальное напряжение на выходе из блока питания 25 вольт.

Осциллограмма трансформаторного лабораторного блока питания. Напряжение на выходе 25 вольт.

P. S. Все схемы и печатные платы в этой статье я разработал самостоятельно. И прежде чем написать я убедился в 100% работоспособности лабораторного блока питания во всех режимах. Если у вас, что то не получилось, проверьте все ли вы сделали правильно…

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как работает лабораторный блок питания.

Когда то у меня был советский источник питания Б5-47, он очень громко и противно пищал, грелся, периодически из него шел дым. Таким образом пользование сей девайсом более 5 минут причиняло просто невыносимые моральные страдания. Явно он был неисправен. Вскрытие показало что лучше его сразу выбросить и забыть. К тому же его интерфейс управления мне никогда не нравился, юзабельность тоже оставляла желать лучшего. Понятно, что без нормального БП жизнь скучна, решил быстренько сделать БП из того что было под рукой. В итоге изготовление данной конструкции по разным причинам затянулось аж на 2 года. Собственно вот результат:55816_original.jpgТребования были следующие: регулируемое выходное напряжение до 30 В с регулируемым токоограничением до 5 А. Разумеется должна применяться цифровая индикация. Дизайн должен напоминать MASTECH HY3005D и им подобные. Единственное — мне никогда не нравилось что первый прибор показывает ток. Ну неправильно это — напряжение всегда первично, соответственно первый прибор должен показывать именно напряжение.Первоначально проектировал схему на базе линейного стабилизатора К142ЕН2А, но в итоге отказался от этой идеи — низкий КПД, регулирующий силовой транзистор сильно грелся даже с учетом того что был предусмотрен переключатель отпаек на вторичной стороне трансформатора. Да и вообще всё как-то криво работало. Пришлось выпилить.Второй вариант схемы разработал на базе легендарного ШИМ-контроллера TL494, который в разных вариациях встречается во многих компьютерных блоках питания. На этот раз всё получилось как надо.Вкратце о конструкции:Принципиальная схема (кликабельно)Как уже говорил — девайс собрал из запчастей, большинство которых были в радиусе 5 метров от меня.Понижающий трансформатор нашелся под столом, марки я его не знаю. Напряжение на вторичке около 40 В.D1 — TL494, VD1 — диод шоттки и тороидальный дроссель L1 выпаял из неисправного компьютерного блока питания: диод шоттки используется в схеме выпрямления, он установлен на радиаторе возле импульсного трансформатора, тороидальный дроссель расположен рядом с ним.LM358 — весьма хороший и распространенный операционный усилитель. Продаётся почти на каждом углу. Рекомендован к приобретению.Шунт R12 — взял из какого-то старого связисткого оборудования: представляет собой 3 толстых изогнутых проволочки.Резисторы R9, R10 используются для регулирования выходного напряжения (грубо, точно). Резисторы R3, R4 используются для регулирования токоограничения (грубо, точно).При наладке БП подстроечным резистором R15 регулируется порог переключения светодиодной сигнализации. Еще возникли проблемы с интегральным стабилизатором 7805 — при входном напряжении около 40 В он начинал ужасно глючить — просаживал выходное напряжение, решил проблему установив по входу 1 Вт гасящий резистор R13.Сам корпус взят от древнего самопишущего регистратора. Компоновка получилась следующей — в середине корпуса установлен силовой трансформатор, который вошел туда как родной, видимо они были созданы друг для друга. В передней части БП расположена электронная схема управления, органы управления и сигнализации. В задней части корпуса расположена вся силовая электроника. Таким образом трансформатор как бы делит БП на 2 части — слаботочную и силовую.Передняя часть корпуса с откинутой лицевой крышкой. Цифровые измерительные приборы приехали из Китая, они заводского производства. Электронная схема управления состоит из 2 плат: плата регулятора напряжения — TL494 c обвязкой, и плата сигнализации — включает в себя микросхемы D3,D4. Почему не сделал на одной плате? Просто сигнализацию я делал несколько позже чем регулятор, и отдельно доводил её «до ума». Там тоже были свои заморочки.Задняя часть корпуса. На общем радиаторе установлены диодный мост KBPC 3510, силовой транзистор КТ827А, дроссель L1, шунт R12. Всё это дело изнутри обдувается 12 сантиметровым вентилятором. В задней части корпуса установлены также предохранители, сглаживающие конденсаторы C1, C4 и маленький вспомогательный импульсный блок питания для работы вентилятора и цифровых измерительных приборов.Конечно, можно было бы купить фирменный БП и не городить огород. Но иногда хочется самому поизобретать велосипедЕсли кто-то задумает повторить конструкцию вот здесь выложил принципиальную схему в высоком разрешении и чертежи печатных плат в формате Sprint Layout.Обновление 09.01.2019По прошествии времени пользователи в комментариях поделились своими модификациями блоков питания. Рассмотрим подробнее предложенные варианты. Обсуждение всех конструкций по-прежнему доступно в комментариях Модификация № 1Предложена Принципиальная схемаДрайвер полевика (точнее, двух параллельно — выравниванием токов занимаются сами полевики) запитан от отдельного источника 15в. У себя взял промагрегат 9-36в/15в TEN 12-2413. От него же запитаны кулеры.TL494 запитана от отдельного источника 24 в.Потенциометр вольтажа любой, замер тока с шунта амперметра. Трансформатор выдает 34 в, выпрямленного около 45.Проблема мощности упиралась в дросселе. Если 5-амперник нормально шел, то 20 помучал.Практическим путем нашел вариант два параллельно на кольцах от компового. 23 витка проводом 1,15мм.Внешний вид конструкции

Модификация № 2Предложена Принципиальная схемаНедавно натолкнулся на эту статью про ЛБП на TL494. Загорелся желанием собрать БП по этой схеме, тем более уже давно валялся трансформатор от польского блока питания на 24в и 4а. Вторичка выдает 34в переменки, после моста с кондером 10000х63в — 42в. Собрал навесным монтажом по этой схеме, включил и сразу дым из 494-й. Все проверил, заменил микросхему, включаю — на холостом работает, на выходе напряжение пытается регулироваться, прикоснулся к 494 — горячая! Добавил номинал 4.7к резистору R1 — блок работает, но стоило подключить лампочку 24в 21вт, как взорвалась микросхема в районе 9, 10 ножки. Отмотал с вторичной обмотки транс-ра несколько витков (снизил напряжение на 4 вольта) и все равно горят микросхемы. Питание на 8,11,12 ноги подавал 12в с другого БП, мотал дроссель разным по диаметру проводом и количеством витков — толку нет (сжег 6 микрух). У меня есть кой — какой опыт по переделке компьютерных блоков в зарядные устройства и регулируемые блоки питания на основе TL494 и ее аналогах. Начал собирать обвязку ШИМа по схемам к комповым БП. Изменил управление силовым транзистором, подал питание на ШИМ от отдельного источника на 12в (переделал зарядку от сотового телефона) и все — блок заработал! Пару дней настраивал на регулировки и свист дросселя (оссцила нет) теперь надо отлутить плату управления и можно собирать в корпус.Сегодня настраивал свой БП. Спасибо большое за подсказку проверять пульсации на выходе динамиком если нет осциллографа. При малой нагрузке (лампочка 12в, 21вт) из динамика слышался гул и вой когда крутил регулятор тока. Устранил это безобразие установкой дополнительных конденсаторов (на схеме обведено красным цветом).Как рекомендовал конденсатор С15 действительно жизненно важный. Еще с помощью динамика определил бракованный потенциометр на регулировку тока. При его вращении из динамика слышался шорох и треск. После его замены и установки доп. конденсаторов из динамика тишина (чуть слышное шипение) при разной нагрузке на выходе БП.Делал тест на нагрев деталей блока. При такой нагрузке в течении 1.5 часов только транзистор грелся (трогал пальцем его корпус), а радиатор, где он установлен, чуть теплый (обдувается вентилятором). Дроссель — холодный, трансформатор тоже.Внешний вид конструкции
Модификация № 3Предложена За основу была взята схема с полевиком https://ic.pics.livejournal.com/rond_60/78751049/3328/3328_original.jpgПри отладке появились проблемы с управлением полевика через трансформатор. На небольших токах нагрузки он работал, при увеличении более 2 ампер происходил срыв и падение тока (при скважности ШИМ > 30%). Пришлось убрать трансформатор и вместо него поставить оптодрайвер ACPL3180 с питанием от отдельной обмотки трансформатора.Сделал 2 независимых канала с регулировкой напряжения до 30V и ограничения тока до 10A. Второй канал запустился сразу, только пришлось подстроить максимальные значения напряжения и тока. Регулировочные резисторы — 10 оборотныеhttps://ru.aliexpress.com/item/Free-Shipping-3590S-2-103L-3590S-10K-ohm-Precision-Multiturn-Potentiometer-10-Ring-Adjustable-Resistor/32673624883.html?spm=a2g0s.11045068.rcmd404.3.de3456a4CSwuV3&pvid=b572f0cb-2d84-4353-a657-a28824b99672&gps-id=detail404&scm=1007.16891.96945.0&scm-url=1007.16891.96945.0&scm_id=1007.16891.96945.0В качестве V-A метра применён китайский модульhttps://ru.aliexpress.com/item/DC-100-10A-50A-100A/32834619911.html?spm=a2g0s.9042311.0.0.466b33edLWGUwZ с доработкой, достигнута точность показаний 2% при больших токах и 10 мА при токах до 1А.Радиатор на транзисторе и диоде один от компьютерного блока питания. При нагрузке на лампу 15V 150W он нагревается до 80 градусов (больше греется диод). Настроил включение вентилятора охлаждения на 50 град. (один на 2 канала)Окончательная схема одного каналаRшунт 0,0015 Ом — Это встроенный шунт прибора, к нему добавляются сопротивление проводов от индикатора до клемм XS104 и «-«, при большом токе они оказывают значительное влияние. Провод 1,5 кв.ммНастройка:1 Запускаем задающий генератор на TL494 и драйвер с отключенным затвором VT101. На выходе драйвера будет ШИМ около 90%. Настраиваем частоту TL в пределах 80 — 100 кГц подбирая R1072 Подключаем затвор транзистора (для подстраховки питание +45 подаём через токоограничивающий балласт, я брал 2 лампы 24V 150W последовательно) и смотрим выход БП. Подключаем небольшую нагрузку (я брал 100 Ом). Если напряжение на выходе регулируется то устанавливаем максимальное значение выхода с помощью R122.3 Убираем токоограничивающий балласт, нагружаем выход сильнотоковой нагрузкой (я брал лампу 15V 150W) и настраиваем максимальный ток в нагрузке: R106 постепенно выводим в нижнее по схеме положение, подбираем R104 и R105 добиваясь срабатывания защиты по току (у меня ограничение по току 10А). При сработке токовой защиты регулировка напряжения с помощью R101 в большую сторону не приводит к его росту на выходе.4 Узел индикации на операционнике и светодиодах не нуждается в настройке (его единственный недостаток — небольшая подсветка красного светодиода когда горит зелёный, можно исправить включив последовательно с красным обычный диод.5 настраиваем Р101 на нужную температуру срабатывания вентилятора нагрузив блок питания на приличную нагрузку измеряя температуру диода и транзистора на радиаторе. Внешний вид:Осциллограммы

prostaya-zashhita-ot-korotkogo-zamykaniya-dlya-bloka-pitaniya-sxema-svoimi-rukami0-150x150.jpg

Схема защиты от КЗ:

Схема, приведённая на рисунке №1, является весьма простой в настройке защитой для радиолюбительского блока питания или любой другой схемы.

prostaya-zashhita-ot-korotkogo-zamykaniya-dlya-bloka-pitaniya-sxema-svoimi-rukami1.jpg
Рисунок №1 – Схема защиты от коротко замыкания.

Работа схемы защиты от короткого замыкания:

Схема весьма простая, и понятная. Так как ток течёт по пути наименьшего сопротивления пока предохранитель FU1 цел, то подключена выходная нагрузка Rн рисунок №2 и через неё протекает ток. При этом постоянно горит светодиод VD4 (желательно зелёного цвета свечения).

prostaya-zashhita-ot-korotkogo-zamykaniya-dlya-bloka-pitaniya-sxema-svoimi-rukami2.jpg
Рисунок №2 – Работа схемы при целом предохранителе

Если же ток нагрузки, превышает максимальный ток допустимый для предохранителя, он срабатывает тем самым разрывая (шунтируя) цепь нагрузки рисунок №3. При этом загорается светодиод VD3 (красного цвета свечения) а VD4 гаснет. При этом не страдает и ваша нагрузка ни схема (конечно при условии своевременно срабатывания предохранителя).

prostaya-zashhita-ot-korotkogo-zamykaniya-dlya-bloka-pitaniya-sxema-svoimi-rukami3.jpg
Рисунок №3 – Сработал предохранитель

Диоды VD1,VD5 и стабилитрон VD2, защищают светодиоды от обратных токов. Резисторы R1,R2 ограничивают ток в схеме защиты. В качестве предохранителя FU1 я рекомендую использовать  самовосстанавливающийся предохранитель. А номиналы всех элементов схемы вы подбираете в зависимости от ваших потребностей.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт https://bip-mip.com/ 

Используемые источники:

  • https://sdelaitak24.ru/%d0%bb%d0%b0%d0%b1%d0%be%d1%80%d0%b0%d1%82%d0%be%d1%80%d0%bd%d1%8b%d0%b9-%d0%b1%d0%bb%d0%be%d0%ba-%d0%bf%d0%b8%d1%82%d0%b0%d0%bd%d0%b8%d1%8f-%d1%81-%d0%b7%d0%b0%d1%89%d0%b8%d1%82%d0%be%d0%b9-%d0%be/
  • https://vladikoms.livejournal.com/2204.html
  • https://bip-mip.com/prostaya-zashhita-ot-korotkogo-zamykaniya-dlya-bloka-pitaniya-sxema-svoimi-rukami.html

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации