Андрей Смирнов
Время чтения: ~14 мин.
Просмотров: 5

Вольфрам и карбид вольфрама: что вы должны знать о них.

Главная > Справочник > Материаловедение > Карбид вольфрама

Карбиды представляют один из классов углеродных неорганических соединений. Они весьма распространены, а наибольшее применение имеют карбиды тугоплавких металлов, в том числе карбид вольфрама (формула WC либо W2C). Данный материал представлен углеродно-вольфрамовым соединением с массовой долей первого элемента 6,1%.

karbid-volframa.jpg

Свойства

Рассматриваемое вещество представлено серым порошком в двух кристаллографических вариантах: с кубической (полукарбид) и гексагональной (монокарбид) решетками. Обе модификации встречаются в температурном диапазоне 2525 — 2755°С. Вторая фаза ввиду отсутствия области гомогенности при отклонении от стехиометрического состава образует графит или переходит в W2C, а при температуре более 2755°С разлагается до углерода и первой фазы. Последняя отличается обширной областью гомогенности, сокращающейся при снижении температуры.

Монокарбид вольфрама менее тверд в сравнении с полукарбидом, но способен формировать кристаллы. Второй вариант значительно более температуро- и износоустойчив. К тому же он способен к внедрению в твердые растворы.

Карбид вольфрама отличается хрупкостью, но под влиянием нагрузки проявляет пластичность полосами скольжения.

Кристаллы рассматриваемого вещества характеризуются анизотропией твердости от 13 до 22 ГПа на разных кристаллографических плоскостях.

По сравнению со сталями карбид вольфрама прочнее, но более хрупок и менее подвержен обработке.

Монокарбид имеет температуру плавления 2870°C, кипения — 6000°C. Его молярная теплоемкость равна 35,74 Дж/(моль-*К), теплопроводность — 29,33 кДж/моль. Плотность карбида вольфрама данного типа составляет 15,77 г/см3.

Несмотря на то, что температура плавления большая, термостойкость рассматриваемого материала низка. Это обусловлено отсутствием термического расширения ввиду жесткой структуры. При этом карбид вольфрама характеризуется высокой теплопроводностью. С повышением температуры данный параметр у монокарбида возрастает вдвое быстрее, чем у полукарбида.

karbid-volframa-5.jpg

Кольцо из карбида вольфрама

Рассматриваемые материалы имеют хорошую электропроводность, особенно полукарбид (в 4 раза выше, чем монокарбид). Удельное электросопротивление возрастает с повышением температуры, но при этом снижается упругость. Это обуславливает обрабатываемость электрофизическими методами. Так, при введении источника тепла в области обработки возрастает температура, способствуя размеренному разрушению структуры материала.

Твердость определяется температурой формирования карбидов в вольфрамовом порошке и (в меньшей степени) их пористостью. С ростом температуры увеличивается подвижность атомов составляющих соединения элементов, вследствие чего устраняются дефекты в зернах. Анизотропия параметров карбидов вольфрама меньше, чем для металлов. К тому же данные материалы отличаются наилучшей для тугоплавких металлов упругостью, которая увеличивается с ростом пористости. Однако пластичность низкая (до 0,015%).

karbid-volframa-4.jpg

Микроструктура карбида вольфрама

Карбид вольфрама характеризуется стойкостью к многим кислотам, а также их смесям при обычной температуре, но растворим в некоторых кислотах при кипении. Не подвержен растворению в 20% и 10% гидроксиде натрия. Ввиду высокой летучести оксида вольфрама начинает окисляться при 500 — 700°C и завершает окисление при более 800°C.

Наконец, ввиду химической инертности данное соединение нетоксично.

Получение

Существует несколько методов получения рассматриваемого соединения.

Первый — углеродное насыщение вольфрама. В результате на поверхности вольфрамовых частиц образуется монокарбид. Из него диффундирует углерод, формируя слой полукарбидного состава.

Для данных работ применяют вольфрамовый порошок и сажу. Данные материалы смешивают в определенном соотношении, наполняют ими, утрамбовывая, емкости и ставят в печь. Во избежание окисления операцию производят в водородной среде, так как в результате взаимодействия данного элемента с углеродом при 1300°С формируется ацетилен. Рассматриваемая технология предполагает формирование карбида вольфрама преимущественно за счет углерода. Температурный режим определяется гранулометрическим составом порошка.  Так, для мелкозернистого используется температурный интервал 1300 — 1350°С, для крупнозернистого — 1600°С. Длительность выдержки равна 1 — 2 ч. В завершении получается карбид вольфрама, представленный немного спекшимися блоками.

Вольфрам

Второй вариант — углеродное восстановление вольфрамового оксида с карбидизацией. Данный метод предполагает совмещение карбидизации и восстановления. Процесс идет в среде CO и водорода.

Кроме того, карбид вольфрама получают из газовой фазы путем осаждения. Такое производство предполагает разложение при 1000°С карбонила вольфрама.

Восстановление вольфрамовых соединений с карбидизацией. Данную операцию осуществляют путем нагрева в водородной среде смеси паравольфрамата аммония либо вольфрамового ангидрида и вольфрамовой кислоты при 850 — 1000°С.

Наконец, выращивают кристаллы данного соединения из расплава. При этом используют смесь из Co и 40% монокарбида. Ее расплавляют при 1600°С в тигле из оксида алюминия. После гомогенизации температуру постепенно (1 — 3°С/мин) снижают до 1500°С и выдерживают 12 ч. Далее материал охлаждают и в кипящей соляной кислоте растворяют матрицу.

Кроме того, большие монокристаллы (до 1 см) выращивают по методу Чохральского.

Применение

Благодаря приведенным выше свойствам, существует несколько сфер применения карбида вольфрама.

  1. Его применяют для выпуска деталей большой коррозионной и износоустойчивости и твердости: фрез, абразивных материалов, резцов, сверл, долот и т. д.
  2. Рассматриваемое соединение применяют для наплавки и газотермического напыления с целью повышения износостойкости путем создания твердой поверхности.
  3. Карбид вольфрама служит материалом для часовых браслетов, пулевых и снарядных сердечников, ювелирных изделий и т. д.

Применение карбида вольфрама

Оптимальным температурным режимом для предметов из него считают диапазон 200 — 300°С. Упругость данного материала обеспечивает его применение при знакопеременных нагрузках.

Сплавы

Ввиду плохой обрабатываемости карбид вольфрама применяют не в чистом виде, а создают сплавы с ним. Наиболее распространены твердые варианты с кобальтом. Также встречаются более сложные сплавы, включающие карбид тантала и титана. При этом вольфрам в любом случае преобладает, составляя 70 — 98%.

Ввиду высокой температуры плавления при создании сплавов рассматриваемого материала не используют такие технологии, как легирование, плавление и смешение, так как они нерентабельны. Вместо этого применяется порошковая металлургия. Принцип данного метода состоит в использовании порошков основного металла и примеси. При этом они значительно отличаются температурой плавления. Их смешивают барабанно-шаровой мельницей и прессуют в близкую к целевой форму. Ей придают монолитность путем спекания при температуре, меньшей точки плавления основного металла. Далее приведена последовательность выполнения.

Порошок карбида вольфрама измельчают до гранул целевого размера, предварительно увлажнив. Данный параметр определяется назначением материала, так как обуславливает конечные параметры изделий. Далее порошок смешивают со связующим веществом, представленным, например, кобальтом либо прочими металлами, и восковой мягкой смазкой, служащей для скрепления гранул после брикетирования.

После этого порошок сушат в распылительной или вакуумной сушилке, удаляя большую часть влаги. С целью улучшения текучести полученных гранул производят пеллетизацию, придавая им шарообразную форму.

Существует несколько технологий придания порошку формы. Наиболее распространены среди них литье под давлением и прессование. Новейшим методом является 3D-печать. В завершении формирования частицы скреплены связующим восковым веществом.

Далее форму подвергают нагреву. В результате удаляется восковый загуститель, а гранулы тугоплавкого металла скрепляются частицами расплавленного связующего металла после охлаждения. В рассматриваемом случае тугоплавким металлом является карбид вольфрама. Параметры конечного материала определяются долей связующего вещества: чем его больше, тем выше износостойкость и прочность, чем меньше — тем больше твердость и хрупкость.

По завершении спекания предмет подвергают конечной обработке в виде шлифовки и т. д. К тому же на изделия из карбида вольфрама нередко наносят дополнительное защитное покрытие.

Вольфрамокобальтовые сплавы характеризуются минимальным напряжением на срез, значительной зависимостью параметров от доли кобальта, плохой обрабатываемостью. Первая особенность обуславливает неуместность таких материалов для применения в условиях сдвиговых деформаций. Из-за плохой подверженности обработке перед использованием заготовки из них пластифицируют либо спекают. Наличие кобальта повышает эксплуатационные температуры карбидов вольфрама до 700 — 800°С. По данному параметру они превосходят все марки сталей, кроме жаропрочных. Следует отметить, что, в отличие от чистого карбида вольфрама, его соединения в некоторых соотношениях с кобальтом токсичны.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Метки: Материалы, Сплавы

Карбиды – класс неорганических соединений химических элементов с углеродом.  И, хотя самым распространённым из карбидов является цементит – основная структурная составляющая любой стали, наибольшее  практическое применение получили всё же карбиды тугоплавких металлов – тантала, титана, и особенно вольфрама.

Карбиды металлов считаются одними из наиболее тугоплавких веществ, причём с увеличением порядкового веса этот показатель возрастает. В частности, именно сочетание карбида вольфрама с кобальтом в различных процентных соотношениях образует целый класс инструментальных материалов особо высокой прочности и износостойкости – твёрдых сплавов.

Дело в том, что углерод образует с вольфрамом два разных химических соединения – монокарбид вольфрама WC и полукарбид вольфрама W2C.Первый из них менее устойчив и твёрд, однако, обладая способностью образовывать кристаллы в расплаве вольфрама, уже с 1923 г. применяется как составляющая часть разнообразных минералокерамических композиций. В противоположность монокарбиду вольфрама его двоюродный «брат» полукарбид вольфрама имеет значительно большую температурную стойкость, а также может легко внедряться в твёрдые растворы  WC с другими металлами – железом, кобальтом и др. Кроме того, полукарбид вольфрама имеет чрезвычайно высокую износостойкость. Таким образом, в технике находят применение оба вида карбидов.

Физико-механические характеристики карбидов вольфрама определяются степенью их дисперсности, химической чистотой, а также способом получения, который, в свою очередь, зависит от области будущего применения.

В частности, основные свойства 98% -ного карбида вольфрама  следующие:

  1. Предел прочности на изгиб, МПа, не ниже – 1000.
  2. Предел прочности на сжатие, МПа, не ниже – 9500.
  3. Модуль упругости, ГПа – 69.
  4. Ударная вязкость, кГмсм2 – 1,2…1.3.
  5. Твёрдость по Роквеллу, HRA, не ниже — 90.
  6. Плотность, г/см2 – 15,0…15,5.
  7. Эрозионная стойкость, 10-6 моль – 0,3…0,8.

Таким образом, в сравнении с наиболее прочными сталями карбид вольфрама обладает значительно более высокими прочностными показателями, но, с другой стороны, он и более хрупок, а также отличается пониженной обрабатываемостью.

Поэтому в чистом виде рассматриваемые соединения не используются, а являются основной составляющей частью твёрдых сплавов. Наиболее часто используются твёрдые сплавы, в состав которых, кроме карбида вольфрама, входит кобальт. Получили применение и более сложные сочетания, с карбидами титана и тантала.   Тем не менее, составляющая карбида вольфрама во всех этих случаях остаётся преобладающей: от 98 до 70%.

Область применения

Твёрдые сплавы как основной вид использования карбидов вольфрама.

Специфическая область применения карбида вольфрама в составе твёрдых сплавов – наплавка слоя повышенной износостойкости на детали, испытывающие при своей эксплуатации повышенные нагрузки от сил трения. Это имеет особое значение для  бурового, режущего и штампового инструмента. Стойкость такого инструмента заметно увеличивается вследствие того, что карбид вольфрама, как твёрдая составляющая в менее прочной металлической матрице, способствует формированию микроструктуры с благоприятным сочетанием прочности и пластичности.

Объясняется это следующим. Карбидная фаза сглаживает перепады в механических характеристиках изготовленной детали. Применительно к инструментальным материалам это означает, что при обработке сравнительно мягких материалов снижается уровень возникающих в инструменте напряжений, в то время как при обработке более хрупких изделий обеспечивается надёжное предохранение поверхностной кромки инструмента от абразивного воздействия откалывающихся микрочастиц. Данная особенность сохраняется, независимо от температуры на контакте, поскольку карбид вольфрама образован двумя высокотемпературными составляющими – тугоплавким вольфрамом и самым тугоплавким из неметаллов – углеродом.

Твердые сплавы вольфрамокобальтовой группы характеризуются следующими особенностями:

  • Практически нулевыми значениями допустимого напряжения на срез, поэтому их нельзя применять в условиях значительных сдвиговых деформаций;
  • Резкой зависимостью исходных показателей от процентного содержания кобальта;
  • Низкой обрабатываемостью, в связи с чем на практике используются предварительно спечённые или пластифицированные исходные заготовки. Окончательная размерная доводка таких изделий проводится при помощи высокоэнергетических технологий: электродуговой, электроискровой, ультразвуковой  или анодно-механической обработкой.

Свойства карбидов вольфрама

При высоких значениях температуры плавления, термостойкость карбидов вольфрама – достаточно низкая. Объясняется такое противоречие просто:  кристаллическая структура и WC, и  W2С – весьма жёсткая, поэтому термическое расширение практически отсутствует. С другой стороны карбид вольфрама обладает значительной теплопроводностью, причём для WC этот параметр с повышением температуры возрастает вдвое интенсивнее, чем у W2С.

Карбиды вольфрама – соединения с хорошей электропроводностью, причём для WC этот показатель выше, чем у W2C, практически в 4 раза. Удельное электросопротивление карбидов вольфрама растёт при повышении температуры. Пропорционально этому, кстати, падают показатели упругости. Именно поэтому карбиды вольфрама хорошо обрабатываются электрофизическими методами: локальное введение  высококонцентрированного источника тепла (дуга, искра, электрический импульс)  повышает температуру в зоне обработки и способствует размерному разрушению структуры рассматриваемых соединений.

С точки зрения практического применения для карбидов вольфрама большее значение имеют их механические показатели – твёрдость и хрупкость. Получаемая в итоге микротвёрдость зависит в основном от температуры, при которой в вольфрамовом порошке формируются карбиды  (менее — от степени их пористости). При повышении температуры дефекты в зёрнах залечиваются, поскольку возрастает подвижность атомов вольфрама и углерода. Поэтому конечная микротвёрдость соединений возрастает.  При этом анизотропия свойств выражается значительно меньше, чем аналогичный показатель для металлов. Это упрощает предварительное ориентирование заготовки перед её обработкой.

Упругость карбидов вольфрама – максимальная для своего класса соединений тугоплавких металлов с углеродом, причём она возрастает с увеличением пористости. Это обстоятельство важно для изделий  (в химсоставе которых присутствуют карбиды вольфрама), работающих в условиях знакопеременных нагрузок.

Пластичность карбидов вольфрама крайне низка, и не превышает 0,015%.

Нанесение защитного слоя на деталь

Вследствие описанных выше факторов,  при покрытии карбидами вольфрама поверхности деталей возрастают не только их износостойкость, но также стойкость против эрозии и окалины. Фактор хрупкости снимается за счёт чрезвычайно малой толщины наносимого карбидсодержащего слоя, который в большинстве случаев не превышает десятков микрон. Такой способ применения карбидов вольфрама более целесообразен: наличие пластичной подложки основного металла снижает чувствительность поверхности от вредного воздействия циклически возникающих рабочих нагрузок, в то время, как высокая поверхностная твёрдость способствует стойкости против износа. Сокращается и расход металлов/сплавов.

Практический диапазон толщины покрытий, содержащих карбиды вольфрама – 100…250 мкм.

Применяются следующие методы нанесения поверхностных покрытий из карбида вольфрама:

  1. Газопламенное напыление.
  2. Плазменное напыление.
  3. Детонационное нанесение.

При газопламенном напылении мелкодисперсный порошок карбида расплавляется теплом кислородно-ацетиленового пламени, температура в факеле которого достигает 2000С. Скорость движения частиц в газовом потоке достигает 150…200 м/с, вследствие чего они приобретают большую кинетическую энергию. Она позволяет частицам легко внедряться в микропустоты на поверхности основного металла, а застывая там, образовывать прочное покрытие.

Технология  газопламенного напыления обладает существенным недостатком. Наличие кислорода в пламени способствует частичному выгоранию углерода. Поэтому более качественными процессами напыления, являются технологии с применением плазмы. Высокотемпературная (более 5000С) плазма исключает попадания в зону обработки даже атомарного кислорода, поэтому химсостав конечного карбидсодержащего слоя полностью соответствует исходному. Кроме того, производительность плазменного напыления выше, чем газопламенного, т.к. в последнем случае рабочую камеру периодически приходится очищать от остатков выделившегося углерода методом аргонной откачки.

При детонационном напылении деталь помещают в подвижную среду, где находятся взвешенные частицы карбидов вольфрама. Объём герметизируется, после чего среда поджигается. Возникающие в результате высокие температуры резко увеличивают скорость перемещения взвешенных частиц, которые равномерным слоем откладываются на поверхности детали.

—>

Карбид вольфрама (другое название – вольфрама монокарбид) – это химическое соединение вольфрама, углерода и керамики. Это вещество одно из самых крепких из всех известных керамик, по твердости сравнимо с алмазом: HRC составляет около 90 единиц, по минералогической шкале Мооса занимает 9-ое место. Еще одной положительной особенностью карбида вольфрама является хорошая износостойкость, высокая температура плавления и отличная стойкость к окислению. Данное вещество в настоящее время активно используется для создания режущего инструмента и сердечников бронебойных снарядов.

Физические свойства карбида вольфрама

1. В нормальных условиях карбид вольфрама гранулированный представляет собой порошок серого цвета с металлическим отблеском.

2. Растворим в воде.

3. Твердость по Роквеллу составляет от 87 до 92 ед.

4. Температура плавления вольфрама карбида равна 2870 градусов.

5. Плотность равна 15,8 г/сантиметр³.

6. Модуль упругости составляет 450÷650 ГПа

7. Эффект тепловой равен 8,4+/-0,2 ккалорий/моль

8. Энтропия стандартная равна 8,5+/-1,5 калорий/(моль на град).

9. Теплоемкость при температуре равной 293 градусам составляет 8,53 калорий/(моль на град).

10. Теплопроводность при температуре окружающей среды 25 градусов составляет 0,07 кал/(сантиметр/с/град).

11. Коэффициент расширения термического равен 3,84(3,9)*106 град-1.

12. Электросопротивление удельное при температуре 200 градусов составляет 19,2+/-0,3 микроОм/сантиметр.

13. Электропроводность удельная равна 52200 Ом-1*сантиметр-1.

Структура карбида вольфрама

Применение карбида вольфрама

— в технике для изготовления инструментов, которые должны обладать высокой твердостью и хорошей коррозионной стойкостью;

— для износостойкой наплавки различных деталей, которые будут эксплуатироваться в условиях интенсивного изнашивания со средними ударными нагрузками;

— широкое применение в изготовлении разнообразных резцов, сверл, абразивных дисков, долот для бурения, фрез и другого режущего инструмента;

— стоимость вольфрама позволяет использовать его сплавы в самых разных областях (он есть в составе твердых сплавов, известных под названиями «Победит» и «Рэлит», около 90 %);

— применяется в наплавке и газотермическом напылении в виде порошкового материала для изготовления износостойких покрытий;

— это один из материалов, который используется для замены хромирования гальванического способом газопламенного высокоскоростного напыления;

— в настоящее время карбид вольфрама является доминирующим в изготовлении снарядов и сердечников бронебойных пуль (однако имеется тенденция постепенного вытеснения карбида вольфрама обедненным ураном);

— в производстве сверхпрочных шариков размером 1 мм для шариковых ручек (полировка выполняется в специальном аппарате в течение нескольких дней с использованием небольшого количества алмазной пасты);

— в производстве браслетов для элитных швейцарских часов, ювелирных изделий – колец, браслетов и кулонов, которым благодаря износостойкости карбида вольфрама гарантирован вечный блеск;

— применяется в виде подложки для катализатора из платины;

— карбид вольфрама используется для создания торцевых уплотнений валов некоторых механизмов в тех случаях, когда окружающая среда имеет высокую вязкость и/или абразивность.

Токсичность карбида вольфрама

Данное вещество химически инертно. По этой причине в нормальных условиях оно не представляет какой-либо опасности для человека. Летальная доза не определена ни для людей, ни для животных. Исследования, которые были проведены в Дрезденском техническом и Лейпцигском университете, показали, что напыль вольфрама карбида может проникать в живые организмы. При этом мелкие частицы нетоксичны, но при соединении с некоторыми веществами они представляют опасность для благополучия клеток. При долгом попадании пыли кобальта и рассматриваемого нами вещества в организме может развиться фиброз.

Используемые источники:

  • https://stankiexpert.ru/spravochnik/materialovedenie/karbid-volframa.html
  • http://zewerok.ru/karbid-volframa/
  • https://fb.ru/article/47699/karbid-volframa-fizicheskie-svoystva-toksichnost-primenenie

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации