Андрей Смирнов
Время чтения: ~17 мин.
Просмотров: 4

Блоки питания 12 Вольт 0.5(1) Ампер

b6029f.jpg

  • Цена: $5.89 (3 шт)

Многие читатели знают, как мне нравится писать обзоры о блоках питания. И вот так случайно сложилось, что я дорвался до некоторого количества данных устройств. Все дело в том, что не так давно в одном известном магазине появились разнообразные блоки питания «с разборки», и об одном я сегодня расскажу. Еще в прошлом году я написал в комментах, что скоро будут обзоры разных блоков питания и я имел в виду именно эти блоки питания. Заказал я их несколько видов, три мелких «БУ» и один новый, довольно мощный. Рассказывать буду «по старшинству», потому начну с самого мелкого. Так как блоки питания я использую часто, то заказал лотом в три штуки, но есть лоты и 1 и 5 и 10 штук. Данный блок питания не является исключением и будет использован в одном из обзоров, который я планирую подготовить в относительно скором времени. Поставляются блоки питания в отдельных больших пакетах, а не три в одном пакете, как я изначально подумал. Т.е. фактически на складе просто ставится отметка, сколько позиций положить в корзинку. К упаковке претензий не было, все обильно замотано вспененным полиэтиленом.a8d20a.jpg В заголовке я написал ток 0.5 (1) Ампер. По ходу обзора я поясню что это означает. На странице товара было написано — 12 Вольт, 1 Ампер, что более чем понятно. Также там написано, что блоки питания disassemble, т.е. не новые, а выковыряны откуда-то. Моя практика показывает, что такие БП чаще имеют лучше качество сборки и схемотехники, чем новые.7a28ca.jpg Блоки питания довольно компактные, реальные размеры составляют примерно 57х35х19мм. Компоновка платы довольно плотная, частично залита силиконом, который в некоторых местах потом пришлось срезать. Так как плата БУ, то заметны обрезанные провода. Платы имеют разный цвет гетинакса, да и выпущены в разное время, но все три в интервале 2007-2008 годов. Также на платах была обнаружена и маркировка модели — 3A-064WU12, по которой я нашел их реальные характеристики. 12 Вольт, 0.5 Ампера, 6 Ватт, КПД при 115 Вольт — 74%. Там же есть и название фирмы производителя — Eng Electric Co., LTD. Так что блоки питания вполне себе фирменные. На странице товара также есть упоминание о токе в 0.5 Ампера, но указанное как-то вскользь. Думаю подразумевалось, что 0.5 номинальный, 1.0 кратковременный. Но в любом случае, данные характеристики правильно и указывать в разделе характеристики, а не в названии товара. Ладно, вернемся к нашим блокам питания. 1. По входу стоит предохранитель на ток в 1 Ампер. Предохранитель замедленный (T- Trage — медленные нем.), это обусловлено импульсным характером тока при включении блока питания. 2. Также по входу присутствует варистор диаметром 7мм и рассчитанный на амплитудное напряжение в 470 Вольт. Рядом с ним виден помехоподавляющий конденсатор Х типа с емкостью 0.1мкФ 3. Дальше синфазный дроссель и диодный мост. 4. Первичная и вторичная стороны соединены через конденсатор Y типа с емкостью 2.2нФ. По большому счету можно было бы поставить пять баллов за фильтр, если бы не два недостатка: 1. Нет термистора, но возможно здесь в нет особого смысла, емкость входных конденсаторов не очень высокая. 2. Параллельно конденсатору Х типа нет разрядного резистора, без него БП может «щипаться» если вынуть вилку из розетки и сразу схватиться за ее контакты. При этом плюс производителю за наличие помехоподавляющего фильтра и варистор. 1. По входу БП установлены два конденсатора емкостью 6.8мкФ каждый, суммарная емкость 13.6мкФ, что для заявленной мощности в 6 Ватт вполне нормально. 2. Но конденсаторы соединены не просто параллельно, между ними дополнительно включен дроссель. На фото не видно цветовую маркировку — коричневый-черный-красный-золотой. 3. Управляет работой блока питания довольно известный ШИМ контроллер VIPer-12A. 4. Рядом с контроллером находится конденсатор фильтра питания этого контроллера. Часто эти конденсаторы могут незаметно выйти из строя и «попить крови», так как внешне остаются нормальными. Если БП БУ, то рекомендую заменять их в первую очередь. Силикон, которым залита плата, имеет небольшой желтый оттенок. Сначала я решил что это из-за нагрева компонентов, но цвет одинаков даже около компонентов, которые не греются. Как я уже писал выше, применен ШИМ контроллер серии VIPer. Это семейство интегрированных ШИМ контроллеров, внутри корпуса микросхемы находится не только сам ШИМ контроллер, а и высоковольтный транзистор, цепи защиты от перегрузки, перегрева и перенапряжения. Я обычно пользуюсь подобными контроллерами от другой, не менее известной фирмы — Power Integrations, мне они нравятся больше. Но по большому счету они во многом очень похожи. Заявлено, что для корпуса DIP-8 мощность составляет 13 Ватт в узком диапазоне (230 Вольт) и 8 Ватт в широком (115-230 Вольт). Так как БП заявлен как 115-230, то получается что реальная мощность до 8 Ватт. На блок схеме виден выходной транзистор, а также цепи защиты. В принципе я мог бы рассказать обо всем этом подробнее, но на мой взгляд это скорее тема отдельной статьи. Во вторичной части блока питания находятся: 1. Выходной диод Шоттки на ток 2 Ампера, что опять же говорит о максимальном выходном токе не более 650-700мА. На одном из выводов диода присутствует ферритовая бусина. 2. Выходных конденсаторов два, 470 и 220мкФ, как и в случае входных производитель Samxon. Не скажу что конденсаторы высокого класса, скорее среднего, изначально это OEM от фирмы Matsushita продающийся под своим брендом. Лично меня расстроило то, что они рассчитаны на 16 Вольт, а не 25, как положено при таком напряжении. 3. Между конденсаторами есть место под дроссель для уменьшения пульсаций, но вместо него установлена перемычка. 4. Цепь стабилизации стандартна, регулируемый стабилитрон AZ431 (аналог TL431) и оптрон EL817 (аналог PC817). По выходной цепи не понравились две вещи: 1. Отсутствие выходного дросселя. 2. Конденсаторы на 16 Вольт, а не 25. В остальном все сделано довольно неплохо. Качество пайки вполне терпимое. Снизу расположены остальные компоненты, а также пара стабилитронов, о которых я расскажу ниже. Расстояние между высоковольтной и низковольтной сторонами вполне достаточное. Отсутствуют защитные прорези, но так как БП изначально проектировался под установку в закрытый корпус, то допустимо делать и так. Схема блока питания в общем-то стандартна и фактически сделана по даташиту ШИМ контроллера. Из дополнительных мелочей, которые весьма полезны в плане безопасности нагрузки я отмечу пару стабилитронов. ZD1 — Напряжение 14 Вольт, установлен параллельно выходу, задача — не допустить поднятия выходного напряжения выше 14-14,5 Вольт. ZD2 — Напряжение 16 Вольт, установлен параллельно транзистору оптрона, задача — ограничить выходное напряжение в случае обрыва или выхода из строя цепи обратной связи. В комментариях мне несколько раз писали, что я не совсем правильно подхожу к тестам уровня пульсаций. Что же, я принял информацию к сведению и попробую в этот, а также в следующие раз делать это более корректно. Дело в том, что при измерениях я подключаюсь обычно используя «неправильный» способ, как более удобный. В этом случае земляной провод щупа работает отчасти как антенна, на которую наводятся помехи и искажают осциллограмму. Такой способ для общей оценки большого значения не имеет, но действительно является некорректным. Картинка ниже взята из описания методики тестирования блоков питания. Для корректного снятия осциллограмм надо подключать щуп без длинных проводов прямо на выход блока питания. Как можно увидеть по фото, щуп осциллографа помимо земляного провода с крокодилом имеет возможность подключения сразу около самого щупа. Используя «палки и веревки» я сделал некое подобие специального щупа для проверки блоков питания, наиболее неудобно было подключаться к центральному контакту, так как он имеет коническую форму. Параллельно входу подключены два конденсатора, электролитический 1мкФ 63 Вольта и керамический 0.1мкФ. Конечно то, что я показал выше, можно назвать колхозом, но даже довольно известные фирмы (та же Power Integrations) не чураются делать подобное, правда они использую для этого разъем, но у меня его не было :(. Фото из описания применения ШИМ контроллеров серии TOP от Power Integrations, номиналы элементов взяты оттуда же. Щуп осциллографа был подключен прямо на выходные контакты блока питания, нагрузка к дополнительно запаянному проводу. В процессе подготовки я сравнивал осциллограмму на холостом ходу с подключенной нагрузкой и без, разницы не было. Первое, что меня удивило при включении, напряжение на выходе 12 Вольт с точностью как минимум до второго знака. По большому счету это не имеет значения и даже если бы напряжение было в диапазоне 11.5-12.5 Вольта, то я бы сказал что нормально, но все равно приятно. 1. Холостой ход. 2. 0.25 Ампера 3. 0.5 Ампера 4. 0.75 Ампера 5. 1 Ампер 6. 1.2 Ампера. Видно что напряжение на выходе стало падать только при токе нагрузки выше 0.75 Ампера, что в полтора раза выше заявленного. До этого напряжение держалось очень точно и снижалось примерно на 0.001 Вольта на каждые 0.25 Ампера нагрузки. Уровень пульсаций я бы не назвал маленьким, при номинальном токе 0.5 Ампера они составили 100мВ, но даже при перегрузке не были выше чем 140 мВ. Исследование показало, что максимальный ток, при котором блок питания стабильно держит выходное напряжение, составляет 0.9 Ампера. И это для не нового БП и при почти двукратном выходном токе. Также мне писали, что неправильно тестировать блоки питания используя электронную нагрузку. В данном случае я несогласен с таким заключением, так как в линейном режиме полевые транзисторы нагрузки по сути представляют собой те же резисторы, но с обратной связью. В любом случае я ради эксперимента сравнил поведение блока питания при нагрузке обычным резистором с номиналом в 10 Ом (что было под рукой). На фото видно, что плюсовой щуп нагрузки не подключен. Напряжение конечно просело, так как ток явно выше расчетного. Слева осциллограмма нагрузки током 1 Ампер при помощи электронной нагрузки, справа 1.08 Ампера и резистор в качестве нагрузки. Не сказал бы, что имеется какая-то глобальная разница. Следующий этап, тест на нагрев. Для этого я закрыл блок питания импровизированным «корпусом» и нагружал последовательно током от 0.25 Ампера до 0.9 Ампера. Ток в 0.9 Ампера был выбран исходя из того, что при этом токе БП еще нормально держит выходное напряжение. Каждый тест занимал 20 минут, общее время теста 1 час 20 минут. Все данные свел в табличку, попутно ввел новую графу и теперь указано напряжение на начало теста (V1) и в конце (V2). Данное дополнение позволяет отследить уход напряжения от прогрева. Само напряжение сначала может показаться менее стабильным, чем в тесте выше, но там я подключался прямо к контактам БП, здесь же с использованием куска провода, потому и вышла разница. Но могу сказать, что температурной зависимости выходного напряжения практически нет. Зато выяснилось, что при токе нагрузки в 0.9 Ампера БП примерно через 5-7 минут снизил выходное напряжение. Максимальная температура компонентов после завершения теста составила около 100 градусов у трансформатора и 118 у ШИМ контроллера. При токе до 0.75 Ампера (1.5 от номинала), перегрева нет. Так выглядело ограничение выходной мощности. Я провел повторный тест на уже прогретом БП чтобы было более наглядно. Старт, через 6 минут постепенное снижение напряжения, на отметке 20 минут я снял крышку, напряжение начало потихоньку расти, еще примерно через 15 минут пришлось несколько раз подуть на плату и напряжение быстро вернулось в норму. Выше я посетовал на отсутствие выходного дросселя и решил эту недоработку сравнить, а заодно сравнить как изменится результат. Использовал мелкий самодельный дроссель, буквально что было под рукой. Размер небольшой, намотан проводом 0.68мм. Результат как говорится — налицо. 1, 2. Ток 0.5 Ампера, слева без дросселя, справа с дросселем. 3, 4. Ток 1.0 Ампера. Предупрежу сразу, дроссель не должен иметь большую индуктивность, так как при увеличении индуктивности начнут сильно расти пульсации на первом конденсаторе фильтра и это будет вредно как для самого конденсатора, так и для защитного стабилитрона, установленного параллельно ему. Придется менять конденсатор на аналогичный, но с напряжением в 25 Вольт, а стабилитрон переносить на выход БП. На этом все. Если коротко, то блоки питания хоть и не лишены некоторых недостатков, перечисленных в обзоре, но в целом довольно неплохие и могут быть применены для разных самодельных устройств, где не требуется большая мощность (6-8 Ватт). Блоки питания вполне фирменные и относительно качественные. Поштучно выходят дороже и потому если покупать, то лотами по 3 или 5 штук. Надеюсь что обзор был полезен, как всегда буду рад вопросам в комментариях. Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта. toozpickЭлектроника / Блоки питанияДобавлено 4 комментария Приветствую, Самоделкины!Сегодня мы вместе с Романом, автором YouTube канала «Open Frime TV», будем собирать вот такой миниатюрный блок питания на микросхеме VIPER 22A.

В первую очередь поговорим о том, для чего нужен такой блок питания. В основном автор планирует использовать его как дежурное питание в более мощных блоках для того, чтобы исключить из схемы самозапит и микростарт.
Да, мы немного проиграем в размерах платы, но зато наладка всего устройства будет намного проще. Также этот блок можно использовать как зарядник или же как блок питания для каких-нибудь слаботочных потребителей. Выходная мощность может достигать 15Вт.Вторая же причина сборки — это желание разобраться в обратно ходовых преобразователях, и начать автор решил именно с такого блока. Из плюсов у него то, что силовая и управляющая часть схемы находятся в одной микросхеме и нам остается только намотать трансформатор и развести плату, что очень удобно для начинающего.
Давайте приступать к сборке. Сначала рассмотрим схему устройства:Как видим, рассчитана она на 12В и ток в 0,5А.Но что, если нам нужны другие выходные характеристики? Для этого разработчики написали специальную программу, в которой можно задать требуемое выходное напряжение и ток, а она уже сама подбирает номиналы. Вот к примеру, можем задать напряжение в 5В и ток в 1А, как для зарядного устройства. На выходе получаем вот такие номиналы:
В принципе, тут все хорошо, кроме вот этих кондёров:
Они зависят от того, как вы намотаете трансформатор. В данном случае пришлось их подбирать, так как при стандартных номиналах был слышен небольшой писк, что очень раздражало. Также видим, что программа выдала нам необходимые номиналы делителя для tl431. Они рассчитываются таким образом, что при номинальном выходном напряжении в точке делителя было 2,5В. Когда получили все номиналы, приступаем к разводке печатной платы.Как видим, она получилась миниатюрной и тут присутствуют всего 2 smd элемента.Первый — это резистор для светодиода, который нужно подобрать в зависимости от напряжения, а второй — это конденсатор возле tl431, при трассировке автор про него попросту забыл, а когда вспомнил было уже поздно, так что придется купить smd конденсатор или же переразвести плату.Еще вы могли обратить внимание на полигон возле микросхемы.Это так называемый импровизированный радиатор, так как микросхема отводит тепло только с помощью своих выводов.Теперь самая сложная часть схемы — это трансформатор, точнее это дроссель, но привычней его называть трансформатором.Расчет можно произвести в заводской программе:Но, как видим, там все запутано и плюс диаметры проводов в другой системе измерений. В общем автор рекомендует воспользоваться программой Старичка, так как она намного удобнее.В ней выбираем сердечник, тут можно использовать довольно популярный сердечник из дежурного блока питания ATX — e16.
Автор же использовал сердечник е20, так как только такие были на рынке.Если будете юзать другой сердечник, просто на печатной плате измените расстояние между ножками, вот и все.Итак, дальше указываем параметры обмоток, а также диаметр провода, который имеется в наличии, и программа нам выдает параметры намотки.Обмотку самозапита автор выбрал на 15В, хотя из даташита видно, что напряжение можно поднимать вплоть до 50В.Также немаловажную роль играет зазор в сердечнике. Как было сказано выше, это не трансформатор, а дроссель, и если не сделать зазор, то получится большая индуктивность, которая не будет успевать отдавать энергию в нагрузку и дроссель уйдет в насыщение, что плохо.
Когда разобрались с расчетами, переходим к намотке. Сейчас вы увидите, как мотал свой трансформатор автор данного проекта. Первым делом берем наш каркас, закрепляем начала первичной обмотки и начинаем мотать.
Все обмотки мотаются в одну сторону, допустим вправо, таким образом мы не напутаем с фазировкой. Начало и конец обмотки обозначены на печатной плате.Стараемся мотать виток к витку. После заполнения слоя необходимо произвести изоляцию. Для этого нам понадобится термоскотч. Изолируем поверхность и продолжаем мотать в том же направлении и таким образом делаем столько слоев, чтоб поместилась первичка. Изоляцию нужно использовать в каждом слое для повышения безопасности. Стоит сразу сказать, что технология намотки неправильная, но для таких мощностей пойдет, а уже в более мощной версии, автор обещает показать правильную намотку. Заключается она в том, чтобы разделить первичку на 2 части, одна часть будет в самом низу, а вторая – вверху. Таким образом будет лучше потокосцепление.Когда намотали первичку, начинаем мотать обмотку самозапита, все также вправо, соблюдая фазировку, тут нет ничего сложного.В конце еще один слой изоляции и теперь приступаем к намотке вторички. Ее выводы располагаются на другой части каркаса, направление обмотки сохраняется.Когда закончили и со вторичкой, сделали изоляцию вот такой желтой лентой для красоты.
Дальше необходимо посадить половинки сердечника на каркас. Если намотали все верно, то они должны свободно садится.Теперь то, из-за чего автор так не любит обратноход — это зазор. В принципе, работать будет даже если сделать зазор на глаз, но мы же хотим качественный блок, поэтому начинаем подбирать зазор. В данном случае отлично подошла желтая лента, ее автор взял в 2 слоя.
И теперь проверяем индуктивность с помощью прибора.
Как видим, она совпадает с расчетной, а это значит, что намотали хорошо и выбран правильный зазор. На этом сборка завершена и традиционно у нас тесты. Подключаем блок к сети и проверяем напряжение на выходе.12 вольт — все отлично. Теперь подцепим небольшую лампочку накаливания, рассчитанную на напряжение 12В.
Как видим, опять все отлично. Можем в нагрузку даже подцепить светодиодную ленту, результат тот же.
В общем можно смело советовать данный блок для повторения. Благодарю за внимание. До новых встреч!Видео: Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь. Используемые источники:

  • https://mysku.ru/blog/china-stores/59310.html
  • https://usamodelkina.ru/13679-stabilizirovannyj-blok-pitanija-na-mikrosheme-viper22a.html

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации