$34.99Перейти в магазин Многие знают как я люблю разбираться с разными блоками питания. В этот раз у меня на столе несколько необычный блок питания, по крайней мере такой я еще не тестировал. Да и по большому счету вообще не встречал ранее обзоров блоков питания подобной разновидности, хотя вещь по своему интересная и я раньше делал подобные блоки питания сам.Заказать я его решил из чистого любопытства, решил что может быть полезным. Впрочем подробнее в обзоре.Вообще стоит наверное начать с небольшого лирического вступления. Много лет назад я довольно сильно увлекался аудиотехникой, прошел как через полностью самодельные варианты, так и «гибриды», где использовались УМ мощностью до 100 Ватт из магазина Юный техник, и полуразобранная Радиотехника УКУ 010, 101 и Одиссей 010, потом был Феникс 200У 010С.Даже пробовал собрать УМЗЧ Сухова, но что-то тогда не пошло, уже и не вспомню что именно.Акустика также разная была, как самодельная, так и готовая, например Романтика 50ас-105, Кливер 150ас-009.Но больше всего запомнились Амфитон 25АС 027, правда они у меня были несколько доработаны. Попутно к небольшим изменениям схемы и конструкции я заменил родные динамики 50 ГДН на 75 ГДН.Это и предыдущие фото не мои, так как моя аппаратура давно продана, а я потом перешел на Sven IHOO 5.1, а затем вообще стал слушать только мелкие компьютерные колоночки. Да, вот такой регресс.Но вот что-то начали бродить в голове мысли, сделать что нибудь, например усилитель мощности, возможно просто так, возможно вообще все делать по другому. Но в итоге решил я заказать блок питания. Конечно я могу его сделать сам, мало того, в одном из обзоров я не только это делал, а и выложил подробную инструкцию, но к этому я еще вернусь, а пока перейду к обзору.Начну со списка заявленных технических характеристик:Напряжение питания — 200-240 ВольтВыходная мощность — 500 ВаттВыходные напряжения:Основное — +/-35 ВольтВспомогательное 1 — +/- 15 Вольт 1 АмперВспомогательное 2 — 12 Вольт 0.5 Ампера , гальванически отвязано от остальных.Размеры — 133 x 100 x 42 ммКаналы +/- 15 и 12 Вольт имеют стабилизацию, основное напряжение +/-35 Вольт не стабилизировано. Здесь я наверное выскажу свое мнение.Меня часто спрашивают, какой блок питания купить для одного либо другого усилителя. На что я обычно отвечаю — проще собрать самому на базе известных драйверов IR2153 и их аналогов. Первый же вопрос, который следует после этого — так у них же нет стабилизации напряжения.Да, лично на мой взгляд — стабилизация напряжения питания УМЗЧ не только не нужна, а иногда и вредна. Дело в том, что стабилизированный БП обычно больше шумит на ВЧ и кроме того, могут быть проблемы с цепями стабилизации, потому как усилитель мощности потребляет энергию не равномерно, а всплесками. Мы же слушаем музыку, а не одну частоту.БП без стабилизации обычно имеет немного выше КПД, так как трансформатор всегда работает в оптимальном режиме, не имеет обратной связи и потому больше похож на обычный трансформатор, но с меньшим активным сопротивлением обмоток.Вот собственно перед нами и пример БП для усилителей мощности.Упаковка мягкая, но замотали так, что вряд ли получится его повредить в процессе доставки, хотя противостояние почты и продавцов наверное будет вечным.Внешне выглядит красиво, особо и не придерешься.
Размер относительно компактный, особенно если сравнивать с обычным трансформатором соответствующей мощности.Более понятные размеры есть на странице товара в магазине.1. На входе блока питания установлен разъем, что оказалось довольно удобным.2. Присутствует предохранитель и полноценный входной фильтр. Вот только про термистор, защищающий от бросков тока как сеть, так и диодный мост с конденсаторами, забыли, это плохо. Также в районе входного фильтра расположены контактные площадки, которые надо замкнуть для перевода БП на напряжение 110-115 Вольт. Перед первым включением лучше проверить, не замкнуты ли площадки если у вас в сети 220-230.3. Диодный мост KBU810, все бы ничего, но он без радиатора, а при 500 Ватт он уже желателен.4. Входные фильтрующие конденсаторы имеют заявленную емкость 470 мкФ, реальная около 460 мкФ. Так как они включены последовательно, то общая емкость входного фильтра составляет 230мкФ, маловато для выходной мощности в 500 Ватт. Кстати плата предполагает установку и одного конденсатора. Но в любом случае поднимать емкость без установки термистора я бы не советовал. Причем справа от предохранителя есть даже место для термистора, надо только впаять его и перерезать под ним дорожку.В инверторе применены транзисторы IRF740, хоть и далеко не новые транзисторы, но раньше я их также широко применял в подобных применениях. Как альтернатива, IRF830.Транзисторы установлены на отдельных радиаторах, сделано это отчасти не просто так. Радиаторы соединены с корпусом транзистора, причем не только в месте крепления самого транзистора, а и монтажные выводы радиатора соединены на самой плате. На мой взгляд плохое решение, так как будет лишнее излучение в эфир на частоте преобразования, по крайней мере нижний транзистор инвертора (на фото он дальний) я бы отвязал от радиатора, а радиатор от схемы.Управляет транзисторами неизвестный модуль, но судя по наличию резистора питания, да и просто моему опыту, думаю что не сильно ошибусь, если скажу что внутри стоит банальная IR2153. правда зачем делать такой модуль, для меня осталось загадкой.Инвертор собран по полумостовой схеме, но в качестве средней точки используется не точка соединения фильтрующих электролитических конденсаторов, а два пленочных конденсатора емкостью 1мкФ (на фото два параллельно трансформатору), а первичная обмотка подключена через третий конденсатор, также емкостью 1мкФ (на фото перпендикулярно трансформатору).Решение известное и по своему удобное, так как позволяет весьма просто не только увеличить емкость входного фильтрующего конденсатора, а и применить один на 400 Вольт, что может быть полезным при апгрейде.Габарит трансформатора весьма скромный для заявленной мощности в 500 Ватт. Я конечно протестирую еще его под нагрузкой, но уже могу сказать, что на мой взгляд его реальная длительная мощность на более 300-350 Ватт.На странице магазина, в перечне ключевых особенностей, было указано — 3. Transformers 0.1 mm * 100 multi-strand oxygen-free enameled wire, heat is very low, efficiency is more than 90%.Что в переводе означает — в трансформаторе использована обмотка из 100 штук бескислородных проводов диаметром 0.1мм, уменьшен нагрев и КПД выше 90%.Ну КПД я проверю потом, а вот насчет того, что обмотка многопроволочная, факт. Я конечно их не пересчитывал, но жгут довольно неплохой и данный вариант намотки действительно положительно сказывается на качестве работы трансформатора в частности и всего БП в целом.Не забыли и про конденсатор, соединяющий «горячую» и «холодную» сторону БП, причем поставили его правильного (Y1) типа.В выходном выпрямителе основных каналов применены диодные сборки MUR1620CTR и MUR1620CT (16 Ампер 200 Вольт), причем производитель не стал колхозить «гибридные» варианты, а поставил как положено, две комплементарные сборки, одна с общим катодом, а другая с общим анодом. Обе сборки установлены на отдельных радиаторах и также как в случае с транзисторами, они не изолированы от компонентов. Но в данном случае проблема может быть только в плане электробезопасности, хотя если корпус закрыт, то ничего страшного в этом нет.В выходном фильтре задействовано по паре конденсаторов 1000мкФ х 50 Вольт, что на мой взгляд маловато.Кроме того, для уменьшения пульсаций между конденсаторами установлен дроссель, а конденсаторы, стоящие после него, дополнительно зашунтированы керамическим 100 нФ.Вообще на странице товара было написано — 1. All high-frequency low-impedance electrolytic capacitors specifications, low ripple.В переводе — все конденсаторы имеют низкий импеданс для уменьшения пульсаций. В общем-то так то оно и есть, применены Cheng-X, но это по сути просто немного улучшенный вариант обычных китайских конденсаторов и я бы лучше поставил мою любимую Samwha RD или Capxon KF.Параллельно конденсаторам нет разрядных резисторов, хотя место на плате для них имеется, потому вас могут ждать «сюрпризы», так как заряд держится довольно долго.Дополнительные каналы питания подключены к своим обмоткам трансформатора, причем канал 12 Вольт гальванически отвязан от остальных.Каждый канал имеет независимую стабилизацию напряжения, дроссели для уменьшения помех и керамические конденсаторы по выходу. Но вы наверное заметили, что диодов в выпрямителе пять. Канал 12 Вольт питается от однополупериодного выпрямителя.По выходу, как и по входу, стоят клеммники, причем весьма неплохого качества и конструкции.На странице товара есть фото сверху, где видно все и сразу. Уже потом заметил, что в магазине на всех фото есть монтажные стойки, в моем комплекте их не было :(Печатная плата двухсторонняя, качество весьма высокое, использован стеклотекстолит, а не привычный гетинакс. В одном из узких место сделана защитная прорезь.Снизу также обнаружилась пара резисторов, предположу, что это примитивная схема защиты от перегрузки, которую иногда добавляют к драйверам на IR2153. Но честно говоря, я бы на нее не рассчитывал.Также снизу печатной платы присутствует маркировка выходов и варианты выходных напряжений, под которые изготавливаются данные платы. Немного заинтриговали две вещи — два одинаковых варианта +/- 70 Вольт и заказной вариант.Перед тем, как перейти к тестам, немного расскажу о своем варианте подобного БП.Примерно три с половиной года назад я выкладывал обзор регулируемого БП, где использовался блок питания собранный примерно по такой же схеме.В собранном виде он также выглядел довольно похоже, извините за плохое качество фото.Если убрать из моего варианта все «лишнее», например узел регулировки оборотов вентилятора в зависимости от температуры, а также умощненный драйвер транзисторов и схему дополнительного питания от выхода инвертора, то мы получим схему обозреваемого БП.По сути это тот же БП, только выходных напряжений больше. Вообще схемотехника данного БП совсем простая, проще только банальный автогенератор.Кроме того обозреваемый БП снабжен примитивной схемой ограничения выходной мощности, подозреваю что реализована она так, как показано на выделенном участке схемы.Но посмотрим на что способна данная схема и ее реализация в обозреваемом блоке питания.Здесь надо отметить, что так как стабилизация основного напряжения отсутствует, то оно напрямую зависит от напряжения в сети.При входном напряжении 223 Вольта выходное составляет 35.2 в режиме холостого хода. Потребление при этом 3.3 Ватта.При этом присутствует заметный нагрев резистора питания драйвера транзисторов. Его номинал 150 кОм, что при 300 Вольт дает рассеиваемую мощность порядка 0.6 Ватта. Данный резистор греется независимо от нагрузки блока питания.Также заметен небольшой нагрев трансформатора, фото сделано примерно через 15 минут после включения.Для нагрузочного теста была собрана конструкция, состоящая из двух электронных нагрузок, осциллографа и мультиметра.Мультиметр измерял один канал питания, второй канал контролировался вольтметром электронной нагрузки, которая была подключена короткими проводами.Не буду утомлять читателя большим перечислением тестов, потому сразу перейду к осциллограммам.1, 2. Разные точки выхода БП до диодных сборок, и с разным временем развертки. Частота работы инвертора составляет 70 кГц.3, 4. Пульсации перед дросселем канала 12 Вольт и после него. После КРЕНки вообще все гладко, но есть проблема, напряжение в этой точке всего около 14.5 Вольта без нагрузки основных каналов и 13.6-13.8 с нагрузкой, что мало для стабилизатора 12 Вольт.Нагрузочные тесты проходили так:Сначала нагружал один канал на 50%, затем второй на 50%, потом нагрузку первого поднимал до 100%, а затем и второй. В итоге получалось четыре режима нагрузки — 25-50-75-100%.Сначала что на выходе по ВЧ, на мой взгляд очень даже неплохо, пульсации минимальны, а при установке дополнительного дросселя их вообще можно свести почти до нуля.А вот на частоте 100 Гц все довольно грустно, маловата емкость по входу, маловата.Полный размах пульсаций при 500 Ватт выходной мощности составляет около 4 Вольт.Нагрузочные тесты. Так как напряжение под нагрузкой проседало, то я по мере этого поднимал тока нагрузки чтобы выходная мощность примерно соответствовала ряду 125-250-375-500 Ватт.1. Первый канал — 0 Ватт, 42.4 Вольта, второй канал — 126 Ватт, 33.75 Вольта2. Первый канал — 125.6 Ватта, 32.21 Вольта, второй канал — 130 Ватт, 32.32 Вольта.3. Первый канал — 247.8 Ватта, 29.86 Вольта, второй канал — 127 Ватт, 30.64 Вольта.4. Первый канал — 236 Ватт, 29.44 Вольта, второй канал — 240 Ватт, 29.58 Вольта.Вы наверное заметили, что в первом тесте напряжение не нагруженного канала больше 40 Вольт. Это обусловлено выбросами напряжения, а так как нагрузки нет совсем, то напряжение плавно поднималось, даже небольшая нагрузка возвращала напряжение в норму.Одновременно измерялось потребление, но так как есть относительно большая погрешность при измерении выходной мощности, то расчетные значения КПД я также буду приводить ориентировочно.1. 25% нагрузки, КПД 89.3%2. 50% нагрузки, КПД 91.6%3. 75% нагрузки, КПД 90%4. 476 Ватт, около 95% нагрузки, КПД 88%5, 6. Просто ради любопытства измерил коэффициент мощности при 50 и 100% мощности.В общем-то результаты примерно похожи на заявленные 90%Тесты показали довольно неплохую работу блока питания и все было бы замечательно, если бы не привычная «ложка дегтя» в виде нагрева. Еще в самом начале я оценил примерно мощность БП в 300-350 Ватт.В процессе привычного теста с постепенным прогревом и интервалами по 20 минут я выяснил, что при мощности 250 Ватт Бп ведет себя просто отлично, нагрев компонентов примерно такой:Диодный мост — 71Транзисторы — 66Трансформатор (магнитопровод) — 72Выходные диоды — 75Но когда я поднял мощность до 75% (375 Ватт), то через 10 минут картина была совсем другаяДиодный мост — 87Транзисторы — 100Трансформатор (магнитопровод) — 78Выходные диоды — 102 (более нагруженный канал)Попытавшись разобраться с проблемой, я выяснил, что идет сильный перегрев обмоток трансформатора, в следствие этого прогревается магнитопровод, снижается его индукция насыщения и он начинает входить в насыщение в итоге резко увеличивается нагрев транзисторов (позже я регистрировал температуру до 108 градусов), затем я остановил тест. При этом тесты » на холодную» с мощностью в 500 Ватт проходили нормально.Ниже пара термофото, первое при мощности нагрузки 25%, второе при 75%, соответственно через пол часа (20+10 минут). Температура обмоток достигла 146 градусов и был заметный запах перегретого лака.В общем теперь подведу некоторые итоги, отчасти неутешительные.Общее качество изготовления очень хорошее, но есть некоторые конструктивные нюансы, например установка транзисторов без изоляции от радиаторов. Радует большое количество выходных напряжений, например 35 Вольт для питания усилителя мощности, 15 для предварительного усилителя и независимые 12 Вольт для всяких сервисных устройств.Есть схемные недоработки, например отсутствие термистора по входу и малая емкость входных конденсаторов. В характеристиках было заявлено что дополнительные каналы 15 Вольт могут выдать ток до 1 Ампера, реально я бы не ждал больше 0.5 Ампера без дополнительного охлаждения стабилизаторов. Канал 12 Вольт скорее всего вообще не выдаст более 200-300мА.Но все эти проблемы либо не критичны, либо легко решаются. Самая сложная проблема — нагрев. БП может длительно отдавать до 250-300 Ватт, 500 Ватт только относительно кратковременно, либо придется добавлять активное охлаждение.Попутно у меня возник небольшой вопрос к уважаемой общественности. Есть мысли сделать свой усилитель, соответственно с обзорами. Но какой был бы интереснее, усилитель мощности, предварительный, если УМ, то на какую мощность и т.п. Лично мне он не особо нужен, но вот поковыряться настроение есть. Обозреваемый БП к этому имеет слабое отношение :)Этот БП на алиэкспресс — ссылка, и еще одна.На этом у меня все, надеюсь что информация была полезна и как обычно жду вопросов в комментариях. $34.99Перейти в магазинЭту страницу нашли, когда искали: иип 500 ватт, импульсный бп с двухполярным питанием, импульсный блок питания 1квт схема, мощный преобразователь для умзч, схема импульсного бп для унч от 220в, c[tvs ,kjrjd gbnfybz lkz kfvgjds[ ecbkbntktq yx, из чего можно сделать блок питания для усилителя мощности на 12 вольт, двухполярный импульсный блок питания на 48в, ибп как двуполярный источник питания, двухполярный импульсный бп, какое питание для цифрового усилителя, нужен схема ибп для усилителя ланзар / 40 вольт lay формате, нужен схема ибп для усилителя ланзар /- 40 вольт lay формате, импульсные блоки питания на напряджение 200 вольт, нужен схема импулсного блок питание на усилитель ланзар в сеть lay формате, нужен импульсная блок питания на микросхеме tl494 для усилитель ланзар в lay формате, стабилизированный блок питания лампового усилителя, импульсная блок питания на базе tl494 для усилитель ланзар, источник питания для акустики, использование китайских иип в унч, импульсный блок питания двухполярный, импульсный однотактный блок питания схема, лабораторный блок питания на ir2153, импульсный питания для ланзара своими руками, wx dc2416 схема принципиальная, импульсный блок питания, блок питания для аудио усилителя, блок питания 500 Ватт, тест блока питанияВас может заинтересовать
Товары по сниженной стоимости
Комментарии: 32
Хороший, качественный усилитель мощности звуковой частоты должен иметь на своем борту надежный, безотказный и качественный источник питания. Вокруг вас и меня по сей день, неустанно бушуют споры о применении линейных или импульсных источников питания в УМЗЧ. Я не отношусь категорично к определенной конструкции и применяю в усилителях, как высокочастотные преобразователи, так и линейные блоки питания.
В арсенале IR2161 есть все необходимое для построения надежного импульсного источника питания (ИИП). Присутствует, как защита от перегрузки, так и защита от короткого замыкания (КЗ). Без функции «Софт-старта» поднимать такой разговор было бы несерьезно, поэтому мягкий пуск также присутствует. Еще, к особенностям IR2161 относятся адаптивное мертвое время (ADT) и компенсация выходного напряжения.
Схема блока питания для усилителя на IR2161
Работа схемы
При включении ИИП в сеть, напряжение переменного тока поступает через предохранитель F1 и фильтры C2, L1, C1 на диодный мост VDS1. Энергия выпрямленного напряжения (+310В) накапливается в электролитическом конденсаторе С10 и будет использоваться в дальнейшем для питания первичной обмотки трансформатора T1.
Также, напряжение переменного тока поступает на однополупериодный выпрямитель, выполненный на диоде VD4. Далее выпрямленное напряжение через гасящий резистор R1 поступает на катод стабилитрона VD1 (13 Вольт). Это напряжение сглаживается конденсаторами C3 и C4 и поступает на вывод питания (вывод 1) драйвера IR2161. Хочу обратить внимание, что микросхема не начнет генерацию, пока напряжение на выводе 1 будет меньше 10.5 Вольт. Описанная выше схема питания IR2161 работает только при запуске, в дальнейшем в работу включается цепь самопитания. Самопитание обеспечивается от первичной обмотки трансформатора, через гасящий конденсатор C7, резистор R2 и диоды VD2, VD3. Такой способ питания микросхемы способствует малому нагреву гасящего резистора R1, который выполняет свою основную работу только при запуске. Также за счет подключения гасящего конденсатора C7 к высокочастотной части позволило снизить его емкость до 330пФ, тем самым уменьшив его габариты.
Генерируемые импульсы через резисторы R3 и R5 поступают на затворы полевых транзисторов VT1 и VT2. Транзисторы, открываясь по очереди, подключают нижний отвод первичной обмотки к положительному или отрицательному выводу электролитического конденсатора C10, в котором накапливается энергия выпрямленного напряжения +310В. Верхний отвод первичной обмотки соединен к средней точке емкостного делителя напряжения C11, C13. Таким образом, на первичной обмотке будет присутствовать прямоугольный импульс со значением половины выпрямленного напряжения, то есть примерно 160В. Напряжение с вторичной обмотки поступает на мостовой выпрямитель VDS2, выполненный на диодах Шоттки. Далее уже выпрямленное напряжение через дроссели L2 и L3 поступает на выход ИИП. На выходе блока питания имеются конденсаторы C15-C20, сглаживающие пульсации и служащие накопителями.
Рабочая частота блока питания на IR2161 находится в диапазоне 34-70кГц и зависит от потребляемой мощности. У микросхемы IR2161 нет времязадающих элементов.
Софт-старт
Драйвер IR2161 при старте запускается на частоте 130кГц, дальше по мере зарядки конденсатора C5 до 5В частота осциллятора будет плавно снижаться до рабочей частоты (70кГц на холостом ходу), после того как закончен этап мягкого старта, конденсатор C5 разряжается и далее внутренне подключается уже к цепи компенсации напряжения, драйвер выводится в рабочий режим. Таким образом, устроена функция «Софт-старт». При частоте 130кГц сопротивление первичной обмотки будет довольно высоким, следовательно, напряжение на ней просядет, ограничив выходной ток при зарядке конденсаторов C15-C20. Емкость конденсатора C5 должна быть строго 100нФ, потому что от ее значения зависит не только длительность мягкого запуска, но и время отключения IR2161 при работе защиты от перегрузки и короткого замыкания, а также C5 задействован в цепи компенсации напряжения.
Работа защиты
В схеме резистор R6 является датчиком тока. Через него протекает ток, пропорциональный току нагрузки. При увеличении тока резистора R6, увеличивается на нем и падение напряжения, которое через резистор R5 поступает на 4 вывод драйвера. Этот вывод отвечает за срабатывание защиты.
Защита по перегрузке срабатывает с задержкой примерно 0.5 секунды, когда напряжение на выводе 4 находится в диапазоне от 0.5В до 1В. Задержка исключает ложные срабатывания. Если перегрузка устранена, то примерно через 1 секунду драйвер выйдет из защиты.
Защита от короткого замыкания срабатывает с более короткой задержкой (примерно 50мс), но при условии, что на выводе 4 присутствует напряжение более 1В. При устранении КЗ драйвер IR2161 также сбрасывается в рабочий режим примерно через 1 секунду.
За задержку срабатывания отвечает все тот же конденсатор C5, который отвечает за длительность софт-старта и компенсацию напряжения. Его емкость нельзя увеличивать более 100нФ.
На входе схемы установлен варистор RV1, защищающий схему при скачках сетевого напряжения более 275В.
Компенсация напряжения
Компенсация представляет собой некую стабилизацию выходного напряжения в малых пределах за счет изменения частоты генерации. Как говорилось выше, рабочая частота IR2161 находится в диапазоне от 34кГц до 70кГц. При повышении нагрузки частота будет снижаться. Для понижения выходного напряжения частота драйвера увеличивается. Драйвер получает информацию о токе нагрузке через цепь защиты (см. выше) от датчика тока R6. Когда конденсатор C5 уже подключен к цепи компенсации напряжения (после завершения мягкого запуска), от напряжения на его выводах зависит частота осциллятора, при 0В частота 70кГц, при 5В частота 34кГц.
Несрабатывание Soft—StartMode
Софт-старт в данной схеме не совсем идеален, поэтому стоит учесть, что в случае наличия на выходе блока питания больших емкостей, при его запуске протекают большие токи, которые вводят IR2161 в защиту. Но, если при старте защита сработала, то выходя из нее драйвер, включается сразу в рабочий режим, минуя режим плавного запуска.
Для устранения такой проблемы необходимо уменьшить выходные емкости конденсаторов или увеличить индуктивность дросселей L2, L3. Также, для повышения надежности, в схему включен термистор RT1, который ограничивает ток зарядки емкостей при запуске блока питания.
Немного о мертвом времени
Также хотелось отметить, что для данного драйвера нет элементов, задающих мертвое время. Драйвер его оптимально подбирает сам. Мертвое время – это когда оба ключа находятся в закрытом положении. Автоматику может сбить с толку высокая емкость снаббера, поэтому разработчик схемы (Илья Стельмах) утверждает и категорически не рекомендует использовать снабберную цепь в первичной обмотке трансформатора, подкрепив свои слова опытами и измерениями.
Компоненты схемы
В принципе, все номиналы элементов представлены на схеме импульсного блока питания.
Ток предохранителя F1 от 3А до 5А. Он не является защитой от КЗ, а лишь исключает возможность возникновения пожара при нештатной ситуации. Варистор RV1 на напряжение 275В. Термистор RT1 должен быть рассчитан на ток не менее 3А и иметь сопротивление 10-20Ом.
Конденсаторы C1, C2 – помехоподавляющие (типа X2), можно пленочные.
Диодный мост VDS1 на ток 6 или 8 Ампер.
На печатной плате для R1 есть место установки четырех резисторов на 82кОм по 0.5Вт каждый, установленные попарно в параллель, но также есть возможность установки одного резистора 82кОм 2Вт.
Стабилитрон VD1 на напряжение не менее 13В и не более 14В. Можно установить последовательно два стабилитрона, например на 6.2В и на 7.5В. У IR2161 есть встроенный стабилитрон, но VD1 обязателен для повышения надежности и облегчения работы маломощного встроенного стабилитрона.
Диоды VD2, VD3, VD5 должны быть быстрыми HER108 или серии SF, UF, FR.
Датчик тока R6 рассчитывается по формуле R6 = 32/Pном, где Pном – номинальная мощность. Я, например, применил два резистора по 0.3Ома 1Вт, соединенных параллельно.
На плате есть полигон под SMD резисторы типоразмера 2512, из которых можно собрать сопротивление R6.
Автор схемы настоятельно рекомендует не ставить в качестве C4 емкость более 47мкФ, как и завышать емкость C11 и C13 более 0.47мкФ.
Транзисторы VT1 и VT2 необходимо выбирать близкие по параметрам IRF740, такие как IRF840, STP10NK60, STP8NK80 и им подобные.
На выходе блока питания в качестве элементов диодного моста VDS2 необходимо использовать только диоды Шоттки или очень быстрые импульсные диоды.
Дроссели наматываются на ферритовых стержнях диаметром 6-8мм и имеют от 5 до 30 витков медного эмалированного провода диаметром 1-1.5мм. Я мотал 20 витков, индуктивность составила 12мкГн. Автор схемы рекомендует чем больше витков, тем лучше, то есть оптимальным будет 30 витков.
Синфазный дроссель L1 можно взять готовый из блока питания ПК, либо намотать на кольце по 20-30 витков медным эмалированным проводом 0.6-0.8мм, обратите внимание, что две обмотки мотаются в противофазе и каждая на своей половине сердечника. Кольцо из любого материала, с цветом покрытия: синий, зеленый, желтый, коричневый.
Трансформатор
Сердечник трансформатора типа ER35, взятый из блока питания ПК. Его габариты 35мм*21мм*11мм, а проницаемость составляет 2000. Первичная обмотка у меня содержит 45 витков медного эмалированного провода, диаметром 0.63мм (в одну жилу). Вторичные обмотки по 13 витков того же провода, но в две жилы. Такое количество витков необходимо для вышеописанных параметров сердечника трансформатора и выходного напряжения 40+40 Вольт. Все обмотки мотать в одном направлении.
Первичную обмотку необходимо укладывать виток к витку, до заполнения всей длины каркаса.
После чего нужно положить несколько слоев изоляции.
В качестве изоляции я использую пакет для запекания, нарезанный лентой. Можно использовать термоскотч. Простой скотч использовать нельзя, он плохо передает тепло, и его основа неблагоприятно влияет на покрытие провода.
Далее, необходимо уложить оставшиеся витки первичной обмотки. Например, нам нужно намотать 45 витков, но в первый слой влезло 20 витков, тогда кладем несколько слоев изоляции, а потом равномерно распределяем по всему участку каркаса оставшиеся 15 витков. Я оставшиеся витки мотал виток к витку, но лучше распределять равномерно, это повысит КПД вашего ИИП.
Вторичная обмотка мотается аналогично первичной обмотке. Между первичной и вторичной обмотками необходимо выполнить хороший слой изоляции. Далее двумя жилами провода диаметром 0.63мм я мотал 13 витков, все влезло в один слой. Делаю средний отвод.
От среднего отвода мотаю еще 13 витков, в ту же сторону. Все, абсолютно все витки мотаем в одну сторону. Если влезли не все витки, то равномерно распределяем оставшиеся виточки по всей длине каркаса сердечника трансформатора.
Если у вас другой сердечник, то необходимо убедиться, что у него нет зазора на центральной его части. Также магнитная проницаемость сердечника желательно должна быть в районе 2000.
Скачиваем программу Lite-CalcIT(2000) и вводим параметры сердечника, а также желаемое выходное напряжение. Частоту указываем 34кГц. Диаметр провода лучше всего использовать 0.6-0.8мм, при необходимости использовать 2-3 и более жил, нежели использовать одну жилу диаметром 1мм и более. Это необходимо для того, чтобы не снизить КПД источника питания.
Советы при сборке
Используйте только оригинальные транзисторы и диоды Шоттки. Применяйте номиналы, указанные в схеме без ее изменения. Используйте печатную плату разработчика схемы (приложена к статье), которая отработана множество раз.
Транзисторы и выходные диоды установите на радиатор площадью не менее 300см2, через изоляционные прокладки и втулки, а после сборки проверьте сопротивление между фланцами полупроводников и теплоотводом, сопротивление должно быть бесконечно большим.
Силовые дорожки печатной платы можно залудить оловом или вдоль них пропаять медную жилу.
После монтажа смывайте остатки флюса.
Возможные неисправности
Во-первых, первый запуск необходимо выполнять на холостом ходу через лампу 220В подключенную в разрыв сетевого провода. Если все нормально, то лампа вспыхнет и погаснет. Если лампа продолжит гореть, значит в ИИП есть ошибки, либо он вышел из строя. Пример включения лампы аналогично ИИП на IR2153 представлен ниже.
Если на холостом ходу нагреваются, и происходит быстрая раскачка выходного напряжения, а также на затворах транзисторов наблюдаются выбросы, то автор схемы рекомендует выполнить зазор, в виде наклеенного скотча между всеми тремя соприкасающимися поверхностями сердечника трансформатора. То есть, совсем небольшой зазор.
Осциллограмма у одного из пользователей форума «Паяльник», показывающая выбросы на транзисторах.
Также на форуме было много нареканий в сторону автора, что в полумостовой схеме нельзя выполнять зазор в сердечнике, но те, кто выполнил рекомендации автора, убедились, что он был прав. Я зазор в пару десятых миллиметра сделал еще при склеивании сердечника, то есть капля клея на соприкасающихся поверхностях обеспечила этот самый небольшой зазор, и соответственно у меня выбросов на затворах ключей не было.
Изначально у меня на старте выходили из строя транзисторы, микросхема IR2161 и резисторы R4-R6. Так было несколько раз, пока я не установил оригинальные транзисторы IRF740, поэтому не используйте транзисторы из Китая, с этой проблемой столкнулся не я один.
Еще при старте может наблюдаться такая картина, как цоканье микросхемы IR2161 и естественно она не запускается. Обычно в такой ситуации на 1 выводе драйвера напряжение ниже 10.5В, что препятствует её запуску. Необходимо проверить все номиналы элементов питания и самопитания драйвера, если все соответствует схеме, то необходимо увеличить емкость конденсатора самопитания C7 до 680пФ-1нФ.
Форма сигнала на трансформаторе, на холостом ходу.
Форма сигнала на одном из затворов ключей, на холостом ходу.
На нагрузке осциллограммы не выкладываю, но форма сигнала практически не менялась, за исключением частоты, которая снизилась примерно до 35кГц.
При испытании ИИП был нагружен 160Вт, а после 180Вт в течение 30мин. Нагрузка была статическая, в виде резистора. Нагрев диодного моста VDS1 продолжался до 70C, после чего рост температуры остановился. Радиатор с площадью поверхности 300см2 нагрелся до 60C, также нагрелся трансформатор до температуры 60C. Можно сделать вывод, что данный импульсный блок питания для усилителя на IR2161 можно смело применить для питания двух каналов усилителя НЧ класса AB с выходной мощностью 100Вт на канал, так как в усилителе нагрузка не статическая и сигнал не является чистой синусоидой, с постоянной амплитудой.
Схема и печатная плата взяты из сообщества «[Nem0] Аудиотехника и Радиоэлектроника».
Печатная плата СКАЧАТЬ
Первая часть для ЛЛ — http://pikabu.ru/story/izgotovlenie_domashney_audiosistemyi_…
Есть два варианта блоков питания для усилителей — импульсныйВ и трансформаторный БП. Оба варианта имеют свои плюсы и минусы. Но обо все по порядку.
В ходе проектирования усилителя я закладывал питание от импульсного блока питания, ибо он имеет малый вес, компактен и при всех этих бонусах обладает большой мощностью.В Самое главное отличие импульсного блока питания от обычного сетевого — это частота) Сетевой блок питания работает на частоте 50 Гц, по этому что бы передать нужную мощность в единицу времени нужна большой габарит железа этого самого трансформатора, что бы так сказать насытится энергиейВ (это если очень упрощенно), а у импульсного блока питания все гораздо интереснее, он преобразовывает сетевую частоту 50 Гц в в частоту выше в 1000 раз! Что позволяет уменьшить габариты трансформатора (да, внезапно в ИБП тоже есть трансформатор, не во всех конечно) в десятки раз, при той же мощности) Вот такая замечательная штука этот ИБП.В Типов ИБП бывает большое количество, я для своего усилителя взял зарядку от ноутбука, и она неплохо подошла для этих целей)В Если усилитель, который вы захотите собрать будет питаться от однополярного напряжения, то зарядка вам тоже подойдет.
Если у вас нет никаких требований к габаритам и весу усилителя то есть дешевый, даже почти бесплатный вариант для питания усилителя. Причем он валяется под ногами, вернее стоит.
Этого трансформатора хватит, что бы запитать усилитель мощностью в 100 ватт, что очень даже неплохо!)
Провода, которые с клеммами — это те, которые идут в розетку. Нам надо черный и желтый провод, их через предохранитель в 1 Ампер мы подключим к розетке. А напряжение для питания будет снимать с другой стороны трансформатора, с синего и коричневого провода. Дальше все просто) Совершенно обычная схема выпрямления переменного напряжения.В В качестве конденсаторов фильтра берем электролитические конденсаторы на 63в и 10000мкФ их нам хватит за глаза. Диодный мост надо брать на 20А, больше не меньше))
Если будут вопросы, с радостью отвечу в своей группе ВК — http://vk.com/lumenus.indi
59Используемые источники:
- https://www.kirich.blog/obzory/bloki-pitaniya/560-500-vatt-impulsnyy-blok-pitaniya-dlya-audiousiliteley.html
- https://audio-cxem.ru/shemyi/istochniki-pitaniya/blok-pitaniya-dlya-usilitelya-na-ir2161.html
- https://pikabu.ru/story/izgotovlenie_domashney_audiosistemyi__chast_2_4062780