Андрей Смирнов
Время чтения: ~20 мин.
Просмотров: 40

Лабораторный блок питания на модулях из Китая

ДомойДля начинающих

IMG_20170813_193816.jpgВ этой статье я хочу рассказать и показать на фото свой лабораторный блок питания, который я собирал по блочно, на готовых модулях из Aliexpress. Об этих самых модулях я уже рассказывал по отдельности на сайте. Хотелось сделать простой, надежный, доступный по цене блок, с необходимыми параметрами и небольшими габаритами. В интернете посмотрел пару роликов о подобных блоках, заказал необходимые модули и собрал сам. Изначально в качестве источника питания был применен переделанный компьютерный БП. Но так как мне так и не удалось добиться от него нормальной работы (он довольно сильно грелся, и немного не дотягивал до расчетного максимального тока), решено было взять готовый источник питания на том же Aliexpress. Максимальное рабочее напряжение для блока в большинстве случаев достаточно 0-30 Вольт, хотя была идея сделать от 0 до 50 Вольт.Источник питания, который я применил, отдает 36 Вольт и ток до 5 Ампер. Мощности в 180 Ватт для моих задач вполне достаточно. В качестве регулятора напряжения и тока (ограничения), использовал DC-DC преобразователь на XL4016. В качестве индикатора выступает модуль вольтамперметр dsn-vc288. В качестве корпуса был применен обычный пластиковый корпус типа Z1 (70x188x197 мм). В принципе этих модулей уже достаточно для построения лабораторника, но я добавил сюда еще модуль на LM2596, для того чтобы вывести 5 Вольт на USB разъемы расположенные на передней панели. Еще нам конечно же понадобятся пара выносных переменных резистора на 10 К, тумблер для включения/отключения питания, пара USB гнезд (я взял сдвоенное гнездо), и пара гнезд типа «банан», для подключения выходного кабеля. Крепим модули внутри корпуса, размечаем и сверлим переднюю панель.

Затем выпаиваем из модуля оба подстроечных резистора и припаиваем на их место переменные резисторы на проводах достаточной длинны (я последовательно резисторам на 10 К поставил еще на 1 К, для точной настройки, однако это не дало особого эффекта). Ну и дальше соединяем все модули согласно схеме.

Если делаете с USB, то не забудьте настроить модуль LM2596 на 5В. И обратите внимание что минусовый провод питания USB берется не с модуля LM2596, а с выходной массы БП (с минусового «банана»). Это необходимо для того чтобы когда вы подключаете что-то к USB блоку, вы видели потребляемый ток. В моем блоке можно заметить на фото еще один модуль — это тоже DC-DC, я его вместо LM2596 хотел оставить на роль питания USB, но он довольно прожорливый в холостом режиме, поэтому оставил LM-ку. Также у меня есть вентилятор. Если тоже захотите оборудовать блок вентилятором, то подберите подходящий по габаритам и на напряжение 5 В. Подключается он к плюсу и минусу модуля LM2596 (в этом случае минус берется от модуля, иначе на индикатор будет постоянно выводиться потребляемый вентилятором ток). Очень советую первое включение производить через лампу накаливания 40-60 Вт. Если что-то не так, в этом случае вы избежите фейерверка. У меня блок заработал сразу, и пока что с ним никаких проблем не было.

Всем снова привет! Первый мой пост в новом году, и снова про ЛБП 🙂 Правда этот немного другой — он намного мощнее, компактный и дешевле, чем некоторые магазинные варианты (в конце напишу, сколько вышло в целом за все детали).

Как-то в старом посте, не помню, в каком именно, я упоминал это видео — https://www.youtube.com/watch?v=Wz6b9o9TE3I .Идея мне очень понравилась, и я сразу заказал детали и начал ждать. Через почти два месяца (посылка пришла 30 декабря, а начал собирать я после праздников 4 января) дело пошло.

Некоторые могут спросить — а зачем вообще пилить пост, если можно было посмотреть видео?

Ну во-первых, мне показалось дико неудобным перематывать видео и пересматривать сомнительный момент или ловить стоп-кадр, текст ВМЕСТЕ с видео будут намного понятнее, как по мне. Ну и во-вторых, хотел просто поделиться прибором, который я собрал, пусть я хоть и просто правильно соединил несколько готовых блоков 🙂

Для начала взял схему из начала видео и переделал ее, чтобы было понятнее мне (и, надеюсь, вам тоже) и еще для того, чтобы работал мой индикатор, ибо такого же я не нашел, а этот стоил всего 250 рублей, да и к тому же сине-красный, а не красная срамота, фи! Простите за пеинт 🙁

148437740615693623.png

После схемы первые два вопроса, которые возникли у меня и пришлось решать костылями — это отсутствие у меня заглушек для корпуса и стоек для материнской платы. Пришлось выкручиваться вот так 🙂

14843774401130918.jpg

Пока писал это, осознал, что не сфотографировал, как решил второй вопрос и уже все собрал и запаковал корпус. Подложил я кусок деревяшки лакированный, насверлил в нем дырок и накрутил туда саморезов — дальше будет видно. Понравилось мне даже больше, чем стойки, потому что оно еще заполняет место между верхней и нижней крышкой, где лежала плата сд-рома.

Первый раз вообще в жизни что-то выпиливал гравером, поэтому не получилось супер-аккуратно, но все держится довольно плотно, не болтается и не выпадает. Все равно считаю, что стоит расположить так, как это сделал парень в видео сверху, потому что у меня из-за вот этой вот неаккуратности пришлось отказаться от юсб — порта в этом лабораторнике. Лежит теперь понижалка до 5в, скучает, может в другое место ее прикручу или как-нибудь в будущем переделаю (ага, конечно :D)

Сам удивился, но видимо меня так поглотил процесс, что я почти не делал фоток в процессе 🙂 Здесь кстати видно деревяшку, которую я использовал как изоляцию, выпаянные резисторы и смонтированную на единственные найденные подходящие по диаметру саморезы в доме. Получилось опять же топорненько, но держится — не оторвать!

Вот уже почти полностью собранное устройство на тестах! Видно, как оно работает в режиме К/З (можно регулировать подаваемый ток ограничителем, он у меня синий, как на индикаторе 🙂 и как горит красная лампочка, свидетельствующая о том же.

На этой оно работает в обычном режиме, сфотал без нагрузки, потому что лень было идти за лампочкой 😀 Регулируется от 1.3в до 23.9в, полностью совпадает с показаниями моего мультиметра. Чем мне больше нравится этот индикатор, чем тот, что в видео, так это тем, что у него есть подстроечные резисторы для обоих показателей — тока и напряжения. Ну и выглядит круче 🙂

А теперь полностью собранное устройство в корпусе! Вышло довольно компактно и симпатично (не считая уродливых дырок и щелей на передней панели), но есть несколько моментов, которые упомянуты в видео и которые меня смущают, потому что они могут аукнуться в будущем:

1) Поддон из дерева

Говорят, что модуль, который понижает 24 до выбранного, сильно греется. Мой в процессе тестов и подключения нагрузки нагрелся несильно, но нагрузка была небольшая. Если он будет очень сильно греться (в чем я сомневаюсь, я вряд ли буду на нем что-то долго подключать, кроме как В батарейки, которые жрут 2 ампера и 5 вольт максимум. Но если цели другие, то стоит задуматься о стойках, мне же просто нечем сверлить железо и нет стоек 🙁

2) Тонкие провода питания индикатора и замера напряжения

Тут я решил положиться на китайца, который засунул здоровенные шунты и тоненькие провода на сам индикатор — не просто так, надеюсь? Но по-хорошему, нужно бы их было заменить на толстые провода и припаять их прямо к штырькам. Не сделал этого из-за клемм.

3) Клеммы

Это очень ненадежный способ в долгосрочной перспективе, как я понимаю, но клеммы никак не выпаивались у меня, и я решил оставить все, как есть. К тому же с толстыми проводами из прошлого пункта все наложилось вместе — они не влазили в клеммы и я решил не заморачиваться 🙂

Про не влезший модуль для юсб из-за того, что не было места на передней панели, я вообще молчу, но это не такая уж и большая проблема, потому что если кто-то захочет повторить, то этот человек может спокойно нормально разметить переднюю панель и воспользоваться схемой из видео.

Из плюсов цена (чуть ниже), компактность (представьте размер сд-рома на столе и обычного лабораторника), всевозможные защиты(лично проверял защиту от к/з и защиту от перегрузки в устройстве, обе работают отлично). Ну и просто приятно самому устройство собрать 🙂

Теперь по цене:

Самый дешевый регулируемый блок, который я нашел у нас в городе, чтобы прямо купить с рук. Недостатки в нем очевидны, даже описывать не буду 🙂 Плюс еще пишут, что в нем очень много косяков из-за цены, а тут ты собираешь сам, можешь пропаять, если что-то плохо держится. Обратно к деталям и их цене:

1) Блок питания AC/DC с выходным напряжением 24В 4А(6А максимум может давать) — 500 рублей

2) Понижающий преобразователь DC/DC 7-32В — 0.8-28В, 0.1 — 12А (12А только в режиме К/З) — 350 рублей

3) Вольтметр/амперметр цифровой — 250 рублей

4) Клеммы, резисторы — 200 рублей

Остальное (провода, разъем питания, шнур питания, лист пластмассы, с которого я вырезал, корпус сд-рома, инструменты) либо уже было у меня, либо я нашел где-то бесплатно, поэтому в ценник не вношу

Итого выходит 1300 рублей, и то детали можно было заказать дешевле, потому что я специально заказал все в одном магазине чтобы пришло сразу, а клеммы и резисторы купил на месте у нас, где за них дерут втридорога, поэтому вышло чуть дороже.

Понижалку на юсб тоже не стал включать в цену, т.к. ее не использовал, но стоила она 60 рублей, можно было купить 5 штук за 200 вроде даже

Не уверен, что ссылки можно давать в посте на то место, где покупал я, но если кому-то будет нужно, могу потом отправить ссылки в комментах.

Спасибо всем, кто подписывается, читает или просто дочитал или даже просмотрел это сейчас! Надеюсь, что запилю что-то раньше, чем через месяц, как обычно, но ничего не обещаю 🙂

537 Что вообще такое — инвертор.Данный узел предназначен для преобразования постоянного тока в переменный. В данном случае мы имеем на входе 310 Вольт постоянного тока, которые надо подать на трансформатор. Но так как трансформаторы не хотят работать на постоянном токе, то и нужен инвертор.1497044628_2img_5250.jpgИнвертор состоит из двух основных узлов. ШИМ контроллера.1496995353_3img_2191.jpgА также выходных высоковольтных транзисторов. Попутно весьма кстати попал в кадр трансформатор управления этими транзисторами.1496995371_4img_2188.jpgВпрочем инвертор может выглядеть заметно проще, например у известного блока питания.1496995379_5img_5638-kopiya.jpgМикросхема, жменька деталей, вот и весь ШИМ контроллер.1497044710_6img_5500.jpgВ данном случае схемотехника блока питания, а также его мощность заметно отличаются от предыдущего варианта, потому транзистор всего один.1497044670_7img_5513.jpgЕще один вариант, слева конденсаторы входного фильтра, справа трансформатор, между ними инвертор.Так как на силовом транзисторе выделяется значительная мощность, то чаще всего он устанавливается на радиатор.1497044735_8img_7433.jpgНо давайте немного отвлечемся на историю, с чего собственно все начиналось. Возможно конечно начиналось не с этого, потому точнее будет сказать, с чего начинал я.Как вы понимаете, раньше не было ШИМ контроллеров, а иногда и обычную «кренку» купить была проблема, но прогресс не стоял на месте и радиолюбители пытались заменить большие трансформаторы на импульсные блоки питания.На схеме показан типичный автогенератор, но были схемы и с простой логикой в качестве генератора импульсов.1496995359_11impulsnyy-blok-pitaniya.jpgТогда схемы подобных блоков питания часто встречались в журнале Радио в контексте усилителей мощности. Но мое знакомство было на примере блока питания для Синклера. Кстати на фото один из них, который я оставил себе на память :)Правда вышеприведенная схема требовала подбора транзисторов и в моем случае сильно перегревалась.1496995311_12img_2557.jpgСхема с автогенератором считается самой простой, в данном примере она даже не имеет стабилизации выходного напряжения.1496995386_13shema-transformatora-dlya-galogenovyh-lamp.jpgПри всем современном разнообразии микросхем показанная выше схема также нашла себя в современном мире, в качестве «электронного трансформатора» для галогенных ламп.1496995312_14scimg5197.jpgПравда постепенно такие лампы заменяют на светодиоды, но все равно электронные трансформаторы довольно популярны, в основном из-за свой простоты и дешевизны.1496995374_15elektronnyy-transformator-v-razbore.jpgУже через довольно большое время подобные схемы получили второе дыхание. Известная фирма International Rectifier выпустила весьма простую микросхему для электронного балласта люминесцентных ламп. Но выяснилось, что данная микросхема отлично работает в качестве задающей для импульсного БП. К ним относятся микросхемы IR2151, IR2153 и подобные.Вообще некоторые радиолюбители делали и стабилизированные блоки питания на базе этой микросхемы, но работает это не всегда корректно.По сути для этой микросхемы надо только несколько мелких деталей и пара полевиков, вот и вся схема инвертора. Именно с применением этой микросхемы я делал первичный блок питания для своего лабораторного.Кстати, именно эту микросхему я рекомендую для питания усилителей мощности, как неприхотливую и довольно надежную. А также хочу сказать, что нерегулируемые БП лучше себя ведут в плане шумов. Так выглядит трехканальный блок питания с мощностью в 300 Ватт и ШИМ регулировкой вентилятора. Более полная информация есть в обзоре лабораторника.Также довольно часто можно встретить и однотактные блоки питания на основе автогенератора. Особенно часто они попадались в АТХ боках в качестве дежурки.Также они могут попасться и в очень бюджетных зарядных для телефонов. Автогенератор является самым простым типом инвертора.Хотя бывают и исключения, например блок питания довольно дорогого фирменного кондиционера также имел в своем составе автогенератор, правда сделан довольно качественно и имеет стабилизацию напряжения.В следующий раз мне попались импульсные блоки питания в новых тогда телевизорах. После больших и тяжелых трансформаторов это был прогресс.Схемотехника правда была жуткая, ремонтопригодность слабая, да и габарит я не назвал маленьким. На фото блок питания мощностью 80 Ватт.Сначала они также делались по схеме с автогенератором, но потом начали ставить микросхему, правда особо ничего это не изменило.Вот и подошли мы к теме более современных инверторов, так как на этом этапе блоки питания вышли на тот схемотехнический уровень, который мы сейчас наблюдаем в современных блоках.Да, поднимали частоту, расширяли диапазон работы, мощность, но суть осталась той же что и была 30 лет назад. Правда так как тогда интегральные ШИМ контроллеры были слабо развиты, то делали их в виде сборок.Впрочем и в современных блоках питания не стесняются применять такие вот унифицированные модули, по своему это даже удобно.Типовая блок схема распространенных моделей инверторов состоит из пяти узлов.1. Узел контроля напряжения питания, защита от работы при пониженном и повышенном напряжении.2. Вспомогательное питания или цепь запуска.3. Силовой элемент и датчик тока. Этот узел может заметно отличаться в зависимости от топологии блока питания.4. Собственно ШИМ контроллер, мозги блока питания.5. Узел основного питания ШИМ контроллера.Рассмотрим как происходит запуск большинства блоков питания, эта информация может помочь в поиске неисправностей.После того как подали высокое напряжение, оно через резистор попадает в цепь питания ШИМ контроллера. Как только напряжение достигнет порога включения ШИМ контроллер запускается, питаясь в это время от конденсатора в цепи питания.Если ваш блок питания не подает признаков жизни, проверьте, есть ли питание на входе ШИМ контроллера, иногда эти резисторы уходят в обрыв.Затем ШИМ контроллер проверяет, в порядке ли питающее напряжение. Эта цепь есть далеко не у всех инверторов, потому если ее нет, то можно сразу перейти к следующему шагу.Если с питанием все отлично, то контроллер начинает выдавать управляющие импульсы силовому транзистору. попутно при этом контролируется ток в цепи этого транзистора и если он превышен, то ШИМ контроллер переходит в режим защиты.Если все нормально, то буквально после нескольких тактов на выходе цепи основного питания появляется рабочее напряжение, которое и питает контроллер. Кстати это один из узлов отказа, если питания нет, то блок питания будет работать в старт-стоп режиме.Если все этапы запуска прошли корректно, то дальше вступает в дело ШИМ стабилизация. В данном случае я всегда сравниваю ее с бочкой, в которую мы порциями подаем воду и сливая ее через другой кран с разным напором. Задача контроллера поддерживать всегда один и тот же уровень воды в бочке при том, что вводной кран может быть только в двух состояниях, открыто и закрыто.Кстати, многие видели на выходе блоков питания резистор, подключенный параллельно питанию, он нужен чтобы обеспечить некую минимальную нагрузку, так как блоку питания тяжело работать при очень малой ширине импульса.Для примера ширина импульсов при небольшой нагрузке.Если увеличить нагрузку, то ШИМ контроллер увеличит подачу энергии в трансформатор, а через него в нагрузку.Даже если к примеру нагрузить блок питания на полную, то ширина импульсов не будет полной.Запас необходим для компенсации снижения входного напряжения.Если снизить входное напряжение еще больше, то ШИМ контроллер просто выставит максимальную ширину импульса. Кстати, ШИМ контроллеры блоков питания не формируют 100% заполнение, так как всегда необходимо «мертвое» время для защиты выходных транзисторов. В это время выходные транзисторы закрыты.Для обратноходовых однотактных блоков питания, а именно они используются в качестве блоков питания небольшой мощности, максимальное заполнение составляет 50%.Самым первым ШИМ контроллером, с которым я познакомился, была легендарная TL494. Микросхема очень старая, но так получилось, что у разработчика дешевый и очень универсальный контроллер и даже спустя много лет и при наличии современных решений он еще весьма широко применяется в блоках питания.Выпускается она многими фирмами и иногда под разными названиями, например аналог от Самсунга называется КА7500.На первый взгляд его внутреннее устройство может показаться довольно сложным, но на самом деле таковым не является.Если немного упростить картинку, то будет примерно так:1 и 2, стабилизатор питания и источник опорного напряжения. 3. Генератор импульсов, задает частоту работы контроллера. 4. Два компаратора, один обычно используется для стабилизации тока, второй — напряжения.5. Задатчик мертвого времени, т.е. минимальной паузы между открытым состоянием выходов.6. Узел сложения всех сигналов.7. Триггер, который управляет выходными ключами и задает логику работы, двухтактный или однотактный режим. В некоторых аналогах этот триггер сбоил на частотах ниже 100 Гц, чем доставлял немало сюрпризов строителям повышающих инверторов в 220 Вольт.Микросхема выполнена в корпусе с 16 выводами. Сама по себе надежна, но иногда в блоках питания АТХ, где ее питание идет от источника дежурного напряжения, выходит из строя после его ухода в разнос, когда высыхал конденсатор по выходу 5 Вольт. Пробивало стабилизатор опорного напряжения и на выходе БП запросто могло появиться высокое напряжение. Потому при проверке прежде всего смотреть наличие 5 Вольт на выводе 14.В блоках питания АТ, а потом в распространенных китайских БП в кожухе она питается от своего же силового трансформатора. Запуск происходит за счет резисторов в базовых цепях силовых ключей. При включении они сначала входят в автогенераторный режим, на выходе трансформатора появляется небольшое напряжение, микросхема начинает работать и перехватывает управление на себя. Потому если БП не запускается, то в первую очередь проверяем резисторы выделенные на схеме резисторы.Вторым, не менее легендарным ШИМ контроллером является семейство однотактных UC384х.Думаю что вы могли из встречать раньше в блоках питания и преобразователях напряжения. Внутреннее устройство весьма похоже на TL494, но немного отличается. Для начала у микросхемы только один выход, а не два.Кроме того компараторы привязаны к определенному напряжению, заданному внутри микросхемы, а не универсальные.Ну и конечно ключевая особенность, микротоковый старт. пока микросхема не начнет работать, он потребляет очень маленький ток, потому запустить ее можно прямо от входного напряжения через резистор, TL494 так не умеет. Чтобы запуск проходил корректно, у микросхемы есть пороговая схема определяющая напряжение включения и выключения микросхемы. Существует два варианта, около 9 и 15 Вольт.Кроме того микросхема может иметь 50 и 100% рабочий цикл, первая идет в блоки питания, вторая в преобразователи напряжения. Так получается четыре варианта исполнения этого контроллера.Микросхема выпускается в разных корпусах, но наиболее распространен корпус с восемью выводами.Типовая схема блока питания с этой микросхемой выглядит примерно так.Сейчас на рынке есть много блоков питания с другими микросхемами, но если посмотреть на их схему, то вы увидите очень много общего, все те же узлы и элементы. Отличия если и есть, то они минимальны.Инверторы блоков питания могут иметь разную топологию, и об этом я обязательно расскажу отдельно, но большинство выполнено по схемотехнике флайбек или полумост, две верхние схемы на чертеже. Собственно все описанные сегодня блоки питания работают именно так.Но вернемся к ШИМ контроллерам. Перед этим я описывал варианты, когда ШИМ контроллер отдельно, а силовой узел отдельно. но также получили распространение и полностью интегрированные контроллеры, например серии TOP от Power integrations где практически все собрано в одном корпусе.Не так давно мне даже попалась подделка, причем что интересно, она слева, с лазерной маркировкой, справа оригинал.Распространение они получили благодаря простейшей схемотехнике, где в простом варианте блок питания состоит буквально из нескольких деталей.Потом появились более продвинутые контроллеры, где можно задавать напряжение включения и отключения, а также ограничение выходной мощности. Но при желании их можно перевести в трехвыводный режим, соединив выводы как было на фото раньше.Но в любом случае данные контроллеры гораздо умнее и имеют комплекс защит от разных проблем, например они выдерживали напряжение более 300 Вольт по входу просто блокируя свою работу.Но секрет их популярности был также и в удобной программе расчета, которую предоставлял производитель. Она позволяла рассчитать все, вплоть до укладки обмоток трансформатора. А при обнаружении проблем в расчетах, выдавала подсказки.Производитель предоставлял варианты применения своих микросхем в виде примеров. Был даже вариант компьютерного блока питания, но как-то не пошло.Зато в небольших блоках питания, например мониторов, он встречаются весьма часто.Кроме того я и сам их очень активно использую уже наверное лет 15.

Китайские производители также не отстают, выпуская свои варианты подобных микросхем. Которые довольно успешно применяют в небольших блоках питанияКстати, при желании можно использовать ШИМ контроллеры и без обратной связи от выходного напряжения, используя обмотку питания самого контроллера. Схема упрощается, но стабильность конечно будет немного ниже чем при правильной обратной связи.
В общих чертах на этом все. Вообще мне иногда кажется, что чем больше я рассказываю, тем больше остается за кадром, что еще хотелось бы рассказать более подробно, но не успеваешь. Потому скорее всего будут еще выпуски по отдельным узлам и принципам работы.Видео получилось слишком длинным, даже сам не ожидал, и это при том, что еще почти ничего не сказал за ключевые транзисторы и часть даже вырезал, наверное болтаю слишком много 🙁Несколько ссылок, на полезные обзоры, которые упоминались в видео.Неплохой модуль DC-DC ZXY6005S или лабораторный блок питания своими руками12 Вольт 6-8 Ампер блок питания, который приятно удивил12 Вольт 5 Ампер блок питания или как это могло быть сделаноDC-DC преобразователь, как это иногда бываетS-180-12 180W 12V / 15A блок питания в непривычном формфакторе36 Вольт 10 Ампер 360 Ватт или продолжаем изучать как устроены блоки питания + небольшой бонус48 Вольт, 5 Ампер и 240 Ватт или блок питания который смог удивитьБлоки питания, маленькие и очень маленькиеЭту страницу нашли, когда искали: схема импульсного блока питания китай, шим контроллер rm6203в цепь питания, импульсные бп схемы, классический импульсный источник питания на шим контроллере с защитой, микросхемы для импульсных источников питания телефонов и их применение, принципиальные схемы имппулбсных адаптеров, импульсно линейные блоки питания схемы, схема импульсных блоков питания kw 250 12, детальная схема из чего состоит импульсный блок питания, что за микросхема в блоке питания бп 122, блок питания интегральная схема, самоя простая схема включения шима лнк626р, радиодетали для импульсного блока питания, схему 6 амперного импульсного однотактного бп, схема инвертора 12-220в на smd деталях, на импульсный блок питания пришло повышенное напряжение с сети, защита по току простого импульсного блока питания, на какой частоте работает импульсный блок питания, схема принципиальная блока питания на микросхеме top258258top, дроссель лампы дневного света, импульсный блок питания на mp44010 схема эл.принципиальная собрать самому, инверторный блок питания модель pwi1904sj м электронная схема, б п инвертора, инвертор в импульсном блоке, малогабаритный иип

Вас может заинтересовать

Используемые источники:

  • https://elschemo.ru/instrumenty-elektronshhika/laboratornyj-blok-pitaniya-na-modulyax-iz-kitaya/
  • https://pikabu.ru/story/laboratornyiy_blok_pitaniya__konstruktor_soberi_lbp_sam_iz_provodov_i_gotovyikh_kitayskikh_blokov_4755633
  • https://www.kirich.blog/stati/informaciya-dlya-nachinayuschih/333-iz-chego-sostoit-impulsnyy-blok-pitaniya-chast-3.html

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации