Андрей Смирнов
Время чтения: ~17 мин.
Просмотров: 6

DC-DC преобразователи

📆12.01.15 🙋Chugunov 👀82 911 💬23 Сегодня стали доступны готовые модули импульсных стабилизаторов напряжения на микросхеме LM2596.1420892880_001.jpgГотовые модули импульсных стабилизаторов напряжения на микросхеме LM2596Заявлены довольно высокие параметры, а стоимость готового модуля меньше стоимости входящих в него деталей. Прельщают малые размеры платы. Я решил приобрести несколько штук и испытать их. Надеюсь, мой опыт будет полезен не слишком опытным радиолюбителям.

Содержание / Contents

Я купил на ebay модули, как на фото выше. Хотя на сайте были показаны твердотельные конденсаторы на напряжение 50 В, аукцион оправдал своё имя. Конденсаторы обычные, а половина модулей с конденсаторами на напряжение 16 В.

↑ … это трудно назвать стабилизатором…

Можно подумать, что достаточно взять трансформатор, диодный мост, подключить к ним модуль, и перед нами стабилизатор с выходным напряжением 3…30 В и током до 2 А (кратковременно до 3 А).Я так и сделал. Без нагрузки всё было хорошо. Трансформатор с двумя обмотками по 18 В и обещанным током до 1,5 А (провод на глаз был явно тонковат, так оно и оказалось).Мне нужен был стабилизатор +-18 В и я выставил нужное напряжение. При нагрузке 12 Ом ток 1,5 А, вот осциллограмма, 5 В /клетка по вертикали.1420892872_002-vyhod-s-nagruzkoy.jpgЭто трудно назвать стабилизатором. Причина проста и понятна: конденсатор на плате 200 мкФ, он служит только для нормальной работы DC-DC преобразователя. При подаче на вход напряжения от лабораторного блока питания, всё было нормально. Выход очевиден: надо питать стабилизатор от источника с малыми пульсациями, т. е. добавить после моста ёмкость.Вот напряжение при нагрузке 1,5 А на входе модуля без дополнительного конденсатора.1420892887_003-vhod-s-nagruzkoy.jpgС дополнительным конденсатором 4700 мкФ на входе, пульсации на выходе резко уменьшились, но при 1,5 А были ещё заметны. При уменьшении выходного напряжения до 16 В, идеальная прямая линия (2 В /клетка).Падение напряжения на модуле DC-DC должно быть минимум 2…2,5 В.Теперь можно смотреть пульсации на выходе импульсного преобразователя.Видны небольшие пульсации с частотой 100 Гц промодулированные частотой несколько десятков кГц. Datasheet на 2596 рекомендует дополнительный LC фильтр на выходе. Так мы и сделаем. В качестве сердечника я использовал цилиндрический сердечник от неисправного БП компьютера и намотал обмотку в два слоя проводом 0,8 мм.На плате красным цветом показано место для установки перемычки – общего провода двух каналов, стрелкой – место для припаивания общего провода, если не использовать клеммы.Посмотрим, что стало с ВЧ-пульсациями.Их больше нет. Остались небольшие пульсации с частотой 100 Гц. Неидеально, но неплохо.Замечу, что при увеличении выходного напряжения, дроссель в модуле начинает дребезжать и на выходе резко растёт ВЧ-помеха, стоит напряжение чуть уменьшить (всё это при нагрузке 12 Ом), помехи и шум полностью пропадают.Для монтажа модуля я применил самодельные «стойки» из луженого провода диаметром 1 мм. Это обеспечило удобный монтаж и охлаждение модулей. Стойки можно сильно нагревать при пайке, они не сместятся в отличие от простых штырей. Эта же конструкция удобна, если надо припаять к плате внешние провода – хорошая жесткость и контакт.Плата позволяет легко заменить при необходимости модуль DC-DC.Общий вид платы с дросселями от половинок какого-то ферритового сердечника (индуктивность не критична).

↑ Итоговая схема включения:

Схема проста и очевидна.При длительной нагрузке током 1 А детали заметно нагреваются: диодный мост, микросхема, дроссель модуля, больше всего дроссель (дополнительные дроссели холодные). Нагрев на ощупь 50 градусов. При работе от лабораторного блока питания, нагрев при токах 1,5 и 2 А терпимый в течение нескольких минут. Для длительной работы с большими токами желателен теплоотвод на микросхему и дроссель большего размера.Несмотря на крошечные размеры модуля DC-DC, общие размеры платы получились соизмеримыми с платой аналогового стабилизатора.

↑ Выводы:

1. Необходим трансформатор с сильноточной вторичной обмоткой или с запасом по напряжению, в этом случае ток нагрузки может превышать ток обмотки трансформатора.2. При токах порядка 2 А и более желателен небольшой теплоотвод на диодный мост и микросхему 2596.3. Конденсатор питания желателен большой ёмкости, это благоприятно сказывается на работе стабилизатора. Даже крупная и качественная ёмкость немного нагревается, следовательно желательно малое ESR.4. Для подавления пульсаций с частотой преобразования, LC фильтр на выходе необходим.5. Данный стабилизатор имеет явное преимущество перед обычным компенсационным в том, что может работать в широком диапазоне выходных напряжений, при малых напряжениях можно получить на выходе ток больше, чем может обеспечить трансформатор.6. Модули позволяют сделать блок питания с неплохими параметрами просто и быстро, обойдя подводные камни изготовления плат для импульсных устройств, то есть хороши для начинающих радиолюбителей.

↑ Файлы:

Файл печатной платы в формате lay. DC-DC.zip 🕗 10/01/15 ⚖️ 5,67 Kb ⇣ 74Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.Уже более 10 лет наш журнал существует только на мои средства. Хорош! Халява кончилась. Хочешь файлы и полезные статьи — помоги мне!Пожертвовать на журнал Датагор и др. способы получения доступа. — Спасибо за внимание! Игорь Котов, главный редактор журнала «Датагор» Сергей (Chugunov)РФ, МоскваСписок всех статейПрофиль ChugunovО себе автор ничего не сообщил.

Читательское голосование

Статью одобрили 156 читателей.

Для участия в голосовании зарегистрируйтесь и войдите на сайт с вашими логином и паролем.

Поделись с друзьями!

Связанные материалы

Soft-start на MOSFET и выключатель питания для УНЧ и других устройств… Привет, друзья! Делал я как-то УНЧ с конденсаторами фильтра БП по 50.000 мкФ в плече. И задумал… Вторая жизнь лампового радиоприемника Philips 592LN (Голландия, 1947). Часть 5… В этой части статьи речь пойдет: — о предварительном усилителе и его питании, — о питании модуля ФМ… Малогабаритный «военный» трансформатор 400 Гц в преобразователе напряжения из 12 в 220 Вольт… Для уменьшения веса военной радиоаппаратуры применялась частота питающей сети 400 Гц. При этом… Автоматическое зарядное устройство с циклическим и буфферным режимами для герметичных аккумуляторов малой ёмкости… Простое автоматическое зарядное устройство для зарядки свинцовых аккумуляторов небольшой емкости,… Схемка в блокнот. Низковольтный стабилизатор напряжения (от 0,7V; пригоден для зарядки и питания мобильного телефона)… При изготовлении разного рода устройств с использованием мобильного телефона (МТ), например GSM… Зарядное устройство с циклическим током для восстановления кислотных аккумуляторных батарей, батареек АА, ААА, Крона и никель-кадмиевых аккумуляторов… Заряд кислотных аккумуляторных батарей сопряжен с выделением сероводородных соединений, эти… Малошумящий двухполярный блок питания для высокочувствительных устройств… Делюсь с читателями простой и в то же время удачной конструкцией двухполярного блока питания,… Лабораторный импульсный блок питания. Часть 5. Миниатюрный лабораторный ИБП… Несмотря на простоту схем импульсных блоков питания, описанных в предыдущих частях серии,… Простой Soft-start для усилителя мощности ЗЧ… Это простое приспособление позволяет повысить надежность УМЗЧ и уменьшить помехи в сети в момент… Стабилизатор напряжения сети 1,8 кВт на PIC12F675… В последнее время мощности бытовых нагрузок возросли: появились фены, обогреватели, утюги, СВЧ печи… Двухтактный усилитель на ГУ-32… После подписки на USB-ЦАП на РСМ2702 «GOLDSMITH» встал ребром вопрос: «А на чем его слушать?»… M5230L — малошумящий двухполярный стабилизированный блок питания… Идея При доработке проигрывателя компакт-дисков понадобился отдельный источник двуполярного…

Общаемся по статье 💬

«Двухполярный блок питания из готовых китайских модулей dc-dc step down LM2596»

Комментарии, вопросы, ответы, дополнения, отзывы

Для питания различной электронной аппаратуры весьма широко используются DC/DC преобразователи. Применяются они в устройствах вычислительной техники, устройствах связи, различных схемах управления и автоматики и др.

Универсальный DC-DC преобразователь

Трансформаторные блоки питания

В традиционных трансформаторных блоках питания напряжение питающей сети с помощью трансформатора преобразуется, чаще всего понижается, до нужного значения. Пониженное напряжение выпрямляется диодным мостом и сглаживается конденсаторным фильтром. В случае необходимости после выпрямителя ставится полупроводниковый стабилизатор.

Трансформаторный (линейные) блок питания в сравнении с импульсным.

Трансформаторные блоки питания, как правило, оснащаются линейными стабилизаторами. Достоинств у таких стабилизаторов не менее двух: это маленькая стоимость и незначительное количество деталей в обвязке. Но эти достоинства съедает низкий КПД, поскольку значительная часть входного напряжения используется на нагрев регулирующего транзистора, что совершенно неприемлемо для питания переносных электронных устройств.

DC/DC преобразователи

Если питание аппаратуры осуществляется от гальванических элементов или аккумуляторов, то преобразование напряжения до нужного уровня возможно лишь с помощью DC/DC преобразователей.

Идея достаточно проста: постоянное напряжение преобразуется в переменное, как правило, с частотой несколько десятков и даже сотен килогерц, повышается (понижается), а затем выпрямляется и подается в нагрузку. Такие преобразователи часто называются импульсными.

В качестве примера можно привести повышающий преобразователь из 1,5В до 5В, как раз выходное напряжение компьютерного USB. Подобный преобразователь небольшой мощности продается на Алиэкспресс.

Рис. 1. Преобразователь 1,5В/5В

Импульсные преобразователи хороши тем, что имеют высокий КПД, в пределах 60..90%. Еще одно достоинство импульсных преобразователей широкий диапазон входных напряжений: входное напряжение может быть ниже выходного или намного выше. Вообще DC/DC конвертеры можно разделить на несколько групп.

Классификация конвертеров

Выходное напряжение этих преобразователей, как правило, ниже входного: без особых потерь на нагрев регулирующего транзистора можно получить напряжение всего несколько вольт при входном напряжении 12…50В. Выходной ток таких преобразователей зависит от потребности нагрузки, что в свою очередь определяет схемотехнику преобразователя.

Еще одно англоязычное название понижающего преобразователя chopper. Один из вариантов перевода этого слова – прерыватель. В технической литературе понижающий конвертер иногда так и называют «чоппер». Пока просто запомним этот термин.

Повышающие, по английской терминологии step-up или boost

Выходное напряжение этих преобразователей выше входного. Например, при входном напряжении 5В на выходе можно получить напряжение до 30В, причем, возможно его плавное регулирование и стабилизация. Достаточно часто повышающие преобразователи называют бустерами.

Универсальные преобразователи – SEPIC

Выходное напряжение этих преобразователей удерживается на заданном уровне при входном напряжении как выше входного, так и ниже. Рекомендуется в случаях, когда входное напряжение может изменяться в значительных пределах. Например, в автомобиле напряжение аккумулятора может изменяться в пределах 9…14В, а требуется получить стабильное напряжение 12В.

Инвертирующие преобразователи – inverting converter

Основной функцией этих преобразователей является получение на выходе напряжения обратной полярности относительно источника питания. Очень удобно в тех случаях, когда требуется двухполярное питание, например для питания ОУ.

Все упомянутые преобразователи могут быть стабилизированными или нестабилизированными, выходное напряжение может быть гальванически связано с входным или иметь гальваническую развязку напряжений. Все зависит от конкретного устройства, в котором будет использоваться преобразователь.

Чтобы перейти к дальнейшему рассказу о DC/DC конвертерах следует хотя бы в общих чертах разобраться с теорией.

Понижающий конвертер чоппер – конвертер типа buck

Его функциональная схема показана на рисунке ниже. Стрелками на проводах показаны направления токов.

Рис.2. Функциональная схема чопперного стабилизатора

Входное напряжение Uin подается на входной фильтр – конденсатор Cin. В качестве ключевого элемента используется транзистор VT, он осуществляет высокочастотную коммутацию тока. Это может быть транзистор структуры MOSFET, IGBT либо обычный биполярный транзистор. Кроме указанных деталей в схеме содержится разрядный диод VD и выходной фильтр – LCout, с которого напряжение поступает в нагрузку Rн.

Нетрудно видеть, что нагрузка включена последовательно с элементами VT и L. Поэтому схема является последовательной. Как же происходит понижение напряжения?

Широтно-импульсная модуляция – ШИМ

Схема управления вырабатывает прямоугольные импульсы с постоянной частотой или постоянным периодом, что в сущности одно и то же. Эти импульсы показаны на рисунке 3.

Рис.3. Импульсы управления

Здесь tи время импульса, транзистор открыт, tп – время паузы, – транзистор закрыт. Соотношение tи/T называется коэффициентом заполнения duty cycle, обозначается буквой D и выражается в %% или просто в числах. Например, при D равном 50% получается, что D=0,5.

Таким образом D может изменяться от 0 до 1. При значении D=1 ключевой транзистор находится в состоянии полной проводимости, а при D=0 в состоянии отсечки, попросту говоря, закрыт. Нетрудно догадаться, что при D=50% выходное напряжение будет равно половине входного.

Совершенно очевидно, что регулирование выходного напряжения происходит за счет изменения ширины управляющего импульса tи, по сути дела изменением коэффициента D. Такой принцип регулирования называется широтно-импульсной модуляцией ШИМ (PWM). Практически во всех импульсных блоках питания именно с помощью ШИМ производится стабилизация выходного напряжения.

На схемах, показанных на рисунках 2 и 6 ШИМ «спрятана» в прямоугольниках с надписью «Схема управления», которая выполняет некоторые дополнительные функции. Например, это может быть плавный запуск выходного напряжения, дистанционное включение или защита преобразователя от короткого замыкания.

Вообще конвертеры получили столь широкое применение, что фирмы производители электронных компонентов наладили выпуск ШИМ контроллеров на все случаи жизни. Ассортимент настолько велик, что просто для того чтобы их перечислить понадобится целая книга. Поэтому собирать конвертеры на дискретных элементах, или как часто говорят на «рассыпухе», никому не приходит в голову.

Более того готовые конвертеры небольшой мощности можно купить на Алиэкспрес или Ebay за незначительную цену. При этом для установки в любительскую конструкцию достаточно припаять к плате провода на вход и выход, и выставить требуемое выходное напряжение.

Но вернемся к нашему рисунку 3. В данном случае коэффициент D определяет, сколько времени будет открыт (фаза 1) или закрыт (фаза 2) ключевой транзистор. Для этих двух фаз можно представить схему двумя рисунками. На рисунках НЕ ПОКАЗАНЫ те элементы, которые в данной фазе не используются.

Рис.4. Фаза 1

При открытом транзисторе ток от источника питания (гальванический элемент, аккумулятор, выпрямитель) проходит через индуктивный дроссель L, нагрузку Rн, и заряжающийся конденсатор Cout. При этом через нагрузку протекает ток, конденсатор Cout и дроссель L накапливают энергию. Ток iL ПОСТЕПЕННО ВОЗРАСТАЕТ, сказывается влияние индуктивности дросселя. Эта фаза называется накачкой.

После того, как напряжение на нагрузке достигнет заданного значения (определяется настройкой устройства управления), транзистор VT закрывается и устройство переходит ко второй фазе – фазе разряда. Закрытый транзистор на рисунке не показан вовсе, как будто его и нет. Но это означает лишь то, что транзистор закрыт.

Рис.5. Фаза 2

При закрытом транзисторе VT пополнения энергии в дросселе не происходит, поскольку источник питания отключен. Индуктивность L стремится воспрепятствовать изменению величины и направления тока (самоиндукция) протекающего через обмотку дросселя.

Поэтому ток мгновенно прекратиться не может и замыкается через цепь «диод-нагрузка». Из-за этого диод VD получил название разрядный. Как правило, это быстродействующий диод Шоттки. По истечении периода управления фаза 2 схема переключается на фазу 1, процесс повторяется снова. Максимальное напряжение на выходе рассмотренной схемы может быть равным входному, и никак не более. Чтобы получить выходное напряжение больше, чем входное, применяются повышающие преобразователи.

Следует заметить, что на самом деле не все так просто, как написано выше: предполагается, что все компоненты идеальные, т.е. включение и выключение происходит без задержек, а активное сопротивление нулевое. При практическом изготовлении подобных схем приходится учитывать многие нюансы, поскольку очень многое зависит от качества применяемых компонентов и паразитной емкости монтажа. Только про такую простую деталь как дроссель (ну, просто моток провода!) можно написать еще не одну статью.

Пока только следует напомнить собственно о величине индуктивности, которая определяет два режима работы чоппера. При недостаточной индуктивности преобразователь будет работать в режиме разрывных токов, что совершенно недопустимо для источников питания.

Если же индуктивность достаточно большая, то работа происходит в режиме неразрывных токов, что позволяет с помощью выходных фильтров получить постоянное напряжение с приемлемым уровнем пульсаций. В режиме неразрывных токов работают и повышающие преобразователи, о которых будет рассказано ниже.

Для некоторого повышения КПД разрядный диод VD заменяется транзистором MOSFET, который в нужный момент открывается схемой управления. Такие преобразователи называются синхронными. Их применение оправдано, если мощность преобразователя достаточно велика.

Повышающие step-up или boost преобразователи

Повышающие преобразователи применяются в основном при низковольтном питании, например, от двух-трех батареек, а некоторые узлы конструкции требуют напряжения 12…15В с малым потреблением тока. Достаточно часто повышающий преобразователь кратко и понятно называют словом «бустер».

Рис.6. Функциональная схема повышающего преобразователя

Входное напряжение Uin подается на входной фильтр Cin и поступает на последовательно соединенные катушку индуктивности L и коммутирующий транзистор VT. В точку соединения катушки и стока транзистора подключен диод VD. К другому выводу диода подключены нагрузка Rн и шунтирующий конденсатор Cout.

Транзистор VT управляется схемой управления, которая вырабатывает сигнал управления стабильной частоты с регулируемым коэффициентом заполнения D, так же, как было рассказано чуть выше при описании чопперной схемы (Рис.3). Диод VD в нужные моменты времени блокирует нагрузку от ключевого транзистора.

Когда открыт ключевой транзистор правый по схеме вывод катушки L соединяется с отрицательным полюсом источника питания Uin. Нарастающий ток (сказывается влияние индуктивности) от источника питания протекает через катушку и открытый транзистор, в катушке накапливается энергия.

В это время диод VD блокирует нагрузку и выходной конденсатор от ключевой схемы, тем самым предотвращая разряд выходного конденсатора через открытый транзистор. Нагрузка в этот момент питается энергией накопленной в конденсаторе Cout. Естественно, что напряжение на выходном конденсаторе падает.

Как только напряжение на выходе станет несколько ниже заданного, (определяется настройками схемы управления), ключевой транзистор VT закрывается, и энергия, запасенная в дросселе, через диод VD подзаряжает конденсатор Cout, который подпитывает нагрузку. При этом ЭДС самоиндукции катушки L складывается с входным напряжением и передается в нагрузку, следовательно, напряжение на выходе получается больше входного напряжения.

По достижении выходным напряжением установленного уровня стабилизации схема управления открывает транзистор VT, и процесс повторяется с фазы накопления энергии.

Универсальные преобразователи – SEPIC (single-ended primary-inductor converter или преобразователь с несимметрично нагруженной первичной индуктивностью).

Подобные преобразователи применяются в основном, когда нагрузка имеет незначительную мощность, а входное напряжение изменяется относительно выходного в большую или меньшую сторону.

Рис.7. Функциональная схема преобразователя SEPIC

Очень похожа на схему повышающего преобразователя, показанного на рисунке 6, но имеет дополнительные элементы: конденсатор C1 и катушку L2. Именно эти элементы и обеспечивают работу преобразователя в режиме понижения напряжения.

Преобразователи SEPIC применяются в тех случаях, когда входное напряжение изменяется в широких пределах. В качестве примера можно привести 4V-35V to 1.23V-32V Boost Buck Voltage Step Up/Down Converter Regulator. Именно под таким названием в китайских магазинах продается преобразователь, схема которого показана на рисунке 8 (для увеличения нажмите на рисунок).

Рис.8. Принципиальная схема преобразователя SEPIC 

На рисунке 9 показан внешний вид платы с обозначением основных элементов.

Рис.9. Внешний вид преобразователя SEPIC

На рисунке показаны основные детали в соответствии с рисунком 7. Следует обратить внимание на наличие двух катушек L1 L2. По этому признаку можно определить, что это именно преобразователь SEPIC.

Входное напряжение платы может быть в пределах 4…35В. При этом выходное напряжение может настраиваться в пределах 1,23…32В. Рабочая частота преобразователя 500КГц.При незначительных размерах 50 x 25 x 12мм плата обеспечивает мощность до 25 Вт. Максимальный выходной ток до 3А.

Но тут следует сделать замечание. Если выходное напряжение установить на уровне 10В, то выходной ток не может быть выше 2,5А (25Вт). При выходном напряжении 5В и максимальном токе 3А мощность составит всего 15Вт. Здесь главное не перестараться: либо не превысить максимально допустимую мощность, либо не выйди за пределы допустимого тока.

В быту появилась масса устройств с питанием 5 вольт, поэтому я обратился к этой теме.  Я давно использую регулируемые преобразователи этого типа для всяких мелочей. Но появилась необходимость бесперебойного питания, причем не на минуты, а желательно на часы.

С 12В бесперебойными блоками питания (ББП) проблем нет, выбор большой, а 5В или какое другое напряжение уже редкость. В моем случае, мне нужно от 14В ББП запитать GSM репитер (статья: Усиление сигнала сотовой связи в деревне или на даче (GSM репитер)), которому нужно 5В и максимум 2А.

Когда пропадает напряжение, очень хочется, что бы работала сотовая связь. Дело было далеко от Москвы и цивилизации, но под рукой была плата USB зарядки, построенная на этом принципе с завяленными характеристиками — входное напряжение 24-8 В, выход 5 В, ток 2 А.

stepdown-02-300x284.jpg

Размеры дросселя и диода заставили меня усомнится в 2-х Амперах выхода. Обмерял репитер, его потребление не поднялось выше 0,750 А и я решил пристроить эту зарядку.

Сказано-сделано. Снят USB разъем, припаяны провода, все подключено. Сама плата зажата между пальцами, что бы оценить её температурный режим. После включения, репитер запустился, но температура преобразователя резко взлетела и эксперимент был закончен. Такой нагрев нам не нужен!

Китайцы как всегда завысили характеристики. Пришлось искать что-то более мощное и делить его характеристики на два.

stepdown-01-298x300.jpg

Выбор пал на эту модель с завяленным током до 5 А. Дроссель тут намотан лентой 🙂  трудно назвать это проводом. Емкости на входе и выходе тоже вызывали положительные эмоции, частота работы устройства 272 кГц. В отзывах сообщали о нагреве при токах выше 2 А и я решил провести тестирование и проверить нагрев, проконтролировать ток и напряжение на выходе.

stepdown-08-1-300x180.jpg

При токах до 2 А, вся схема первое время оставалась холодной. Потом начинался плавный нагрев диода.

stepdown-03-300x169.jpg

Нагрузив выход резистором 2 Ома 15 Ватт, я добился тока 2,48 А при напряжении 5,19 В. Хороший запас для моей задачи.

stepdown-04-e1478002323811-300x255.jpg

Надо посмотреть что творится на входах и выходах преобразователя.

stepdown-05-300x169.jpgПри входном напряжении 12,9 В, потребляемый ток составил 1,13 А, а пульсации на выходе 0,1 В.

stepdown-06-300x169.jpg

А вот на выходе с блока питания, пульсации были уже куда больше и достигали 0,3 В. Явно видна работа преобразователя.

stepdown-07-300x242.jpg

Даже при подключении к совсем чистому источнику питания, аккумулятору, на его выходе видна пульсация во время работы.

stepdown-08-300x169.jpg

Снимаешь нагрузку с 5 В выхода, преобразователь все равно в работе и на выходе блока питания это явно видно, пульсации снизились до 0,1 вольта.

stepdown-09-300x217.jpg

Тестирование в течении часа при  токе  1,7 А. проявило медленный  нагрев диода до 47 гр.  Температура всей остальной схемы колебалась от 28-37 градусов . Нагрев не сильный, но при заявленных 5 амперах, я думаю, все буде намного плачевней.  Для моих задач вполне должно хватить тока 2 А.

stepdown-08-3-300x187.jpg
Температура диода.
stepdown-08-2-300x180.jpg
Пульсации на выходе схемы под нагрузкой.

Дальнейшие испытания будут уже в боевых условиях.

2+Используемые источники:

  • https://datagor.ru/practice/power/2683-blok-pitaniya-iz-gotovyh-moduley.html
  • https://a-golubev.ru/tehnologii/dc-dc-preobrazovateli.html
  • https://4ham.ru/ponizhayushhij-preobrazovatel-step-down-converter/

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации