Андрей Смирнов
Время чтения: ~18 мин.
Просмотров: 0

РадиоКот :: Устройство задержки включения другого устройства

—>

17 Июн 2014г | Раздел: Радио для дома

Здравствуйте уважаемые читатели сайта sesaga.ru. Совсем недавно возникла необходимость в реле времени с задержкой включения, через которое планировалось питать вытяжные вентиляторы в туалете и ванной комнате. Идея заключалась в том, чтобы зря не гонять вентиляторы если находишься в указанных помещениях менее минуты: здесь и экономия электроэнергии и меньший износ деталей вентилятора.

ventilyator.jpg

Покупать реле выходило дороговато, а в интернете схему с нужными параметрами не нашел. Поэтому пришлось заняться разработкой схемы реле времени самостоятельно, после чего на свет родилась вот такая простенькая конструкция. Причем такое реле может собрать любой начинающий радиолюбитель всего за один день.

rele-vremeni.jpg

Внимание! Эта конструкция имеет бестрансформаторное питание от сети переменного тока. Собирая ее, обращайте особое внимание на соблюдение техники безопасности при работе с электроустановками.

1. Принципиальная схема реле времени с задержкой включения.

Реле времени содержит 12 деталей и состоит из двух частей: узла питания и узла реле времени.

Узел реле времени собран на интегральном таймере DA1 и реле KL1. Если узел питания убрать, то узел реле времени можно использовать для включения нагрузки на напряжение питания 12 Вольт, например, включение магнитолы, света или подсветки в салоне автомобиля.

Устройство работает так: при включении выключателя SA1 запускается счетчик таймера DA1 и с этого момента начинается отчет времени задержки, по истечении которого на выходе таймера DA1 формируется сигнал, включающий реле KL1, которое своими контактами KL1.1 включает вытяжной вентилятор.

shema-rele-vremeni.jpg

Узел питания собран по бестрансформаторной схеме с гасящим конденсатором С3. Резистор R2 служит для ускорения процесса разрядки конденсатора С3 при выключении устройства. Напряжение после конденсатора С3 выпрямляется диодами VD4 и VD5 и стабилизируется стабилитроном VD3. Конденсатором С2 сглаживаются пульсации выходного напряжения, которое составляет 12 Вольт.

На интегральном таймере NE555 (отечественный аналог КР1006ВИ1) собран узел задержки включения реле. Узел задержки представляет схему одновибратора, управляемого по цепи питания.

В момент подачи питания таймер DA1 начинает отчет времени, по истечении которого на выходе (вывод №3) формируется положительный импульс выходного напряжения, включающий реле KL1, которое замыканием своих контактов KL1.1 подает питание на вытяжной вентилятор.

За счет того, что таймер NE555 обеспечивает на выходе ток нагрузки до 200mA, не пришлось устанавливать транзистор для управления выходным реле KL1.

Время задержки включения реле задается емкостью электролитического конденсатора С1 и величиной сопротивления резистора R1. При указных номиналах этих деталей на принципиальной схеме время задержки составляет 70 секунд.

Диод VD1 устраняет влияние возможных выбросов напряжения питания таймера в течение отчета времени задержки, а диод VD2 служит для надежного срабатывания реле KL1. Время задержки в секундах рассчитывается по формуле: Т = 1,1*R1*C1.

2. Конструкция и детали.

Все детали реле времени размещены на печатной плате размерами 84х29 мм, которая вмонтирована в корпус вентилятора.

Печатная плата рассчитана на установку постоянных резисторов типа МЛТ или на аналогичные импортные. Времязадающий резистор R1 составлен из резисторов 1МОм и 510 кОм мощностью по 0,125 Вт и включенных последовательно. Резистор R2 мощностью 0,5 Вт и сопротивлением 470 кОм.

Постоянный конденсатор С3 может быть емкостью от 0,68 до 1,0 микрофарад и напряжением не менее 400В. Времязадающий электролитический конденсатор С1 емкостью 47 микрофарад и напряжением 15В, а С2 емкостью 220 микрофарад и напряжением не менее 25 Вольт.

В конструкции использованы импортные диоды типа 1N4007. Можно устанавливать любые выпрямительные диоды, рассчитанные на ток 1 Ампер и напряжение не менее 300 Вольт. Стабилитрон VD3 с напряжением стабилизации 12 В. Обмотка реле KL1 на напряжение 12 В, а контакты KL1.1 должны коммутировать напряжение 220 В.

При исправных деталях и правильном монтаже реле времени начинает работать сразу и в налаживании не нуждается. Реле подключается параллельно лампе туалета или ванной комнаты в точках 1 и 2, указанных на схеме. Чтобы в процессе налаживания схемы не ждать полторы минуты, уменьшите сопротивление резистора R1 до 100 кОм.

Вы можете сделать свой чертеж печатной платы, используя материал этого видеоролика, в котором показан процесс, начиная от компоновки деталей на плате и заканчивая рисованием дорожек. Посмотрев этот видеоролик, Вы сможете составить чертеж печатной платы практически для любой конструкции такой сложности.

В этом ролике показан процесс подготовки печатной платы: сверление отверстий, нанесение рисунка дорожек, травление дорожек. Далее идет распайка деталей на плату и монтаж реле времени в корпус вытяжного вентилятора.

Как Вы уже поняли, это реле времени с задержкой включения универсально, и поэтому его можно приспособить под любые нужды. Также можно ознакомиться со схемой и конструкцией реле времени с задержкой выключения, материал которой для публикации на странице сайте предоставил один из читателей.

Удачи!

Литература: Коломбет Е. А. Таймеры. 1983г.

Поделиться с друзьями:

Еще интересно почитать:

—>

Привет, друзья! Предлагаю вам очень полезный Универсальный таймер-реле задержки включения.

Для чего он нужен? Немного теории

Самый большой процент отказов электронного оборудования происходит при резких скачках напряжения, то есть в тот момент, когда напряжение пропадет и через секунду восстановится. В электронике возникают переходные процессы, и любимый дивайс выходит из строя. В наше текущее кризисное время ремонтировать технику очень накладно. В холодильниках, например, часто используются позисторные реле запуска компрессора и при резких включениях — выключениях запускающий позистор не успевает остыть, и компрессор начинает греться, не запускаясь, циклически щелкая реле защиты. Я даже не представляю, как можно компрессор вывести из этого состояния, иначе как не выключив холодильник из розетки минут на пять. А если не выключите — то велик риск выхода компрессора из строя. А там светит его замена с закачкой фреона, и прочими далекими от электроники дорогими вещами.

В сети миллиард схем реле отложенного включения, есть отличные готовые промышленные реле на DIN рейку, но, блин, электронщик я или нет? Тем более схемы в сети мне не понравились — они бестрансформаторные, опасные, защита отсутствует. Беглым взглядом посмотрев их, увидел, что варисторы НИКТО не ставят, горе схемотехники подключают управляющие симисторы напрямую к двигателям. Так категорически делать нельзя, ибо двигатель – индуктивная нагрузка, и при его отключении от сети возникают выбросы под пару киловольт, что не лучшим образом сказывается на симисторе и надежности схемы в целом.

Короче, деталей дома много, руки чешутся чего-нибудь этакое спаять и запрограммировать. А тут еще у холодильника компрессор заклинил. Я его расклинил, нарисовал схему, вытравил плату, запрограммировал ATTINY13 и собрал свой вариант.

Дальше разжевывать буду все довольно детально, крутые электронщики могут не читать.

В чем достоинства и недостатки моего таймера?

Вот его характеристики:

• Микропроцессорное управление, с программируемым запуском после подачи питания

• Диапазон задержки включения — 0-10 минут с шагом 1 минута

• Управление нагрузкой – симистор, а не реле, мощность нагрузки зависит только от симистора. Об этом читайте ниже

• Программирование задержки — удобное, двумя кнопочками

• Защита от повышенного напряжения, задается исключительно напряжением срабатывания защитного варистора. Об этом тоже ниже

• Современная элементарная база

• Полная гальваническая развязка управляющей части от высоковольтной

• Открытый исходный код и чертеж платы, можете дорабатывать реле как вам угодно, полностью все открыто

• Небольшая плата, ее можно вставить в любой подходящий корпус

• Реле защищено по входу и выходу варисторами и предохранителем. Реле можно подключать к любой нагрузке – обычной и индуктивной.

Недостатки:

• Для некоторых, микроконтроллер вместо 555 таймера — это перебор, для ATTINY 13, чтобы она заработала, нужен программатор

• Некоторые просто не могут жить без реле, в схеме вместо этого используется симистор с няшной микросхемой MOC3063

• Нет защиты от пониженного напряжения, но схема отключится, и отключит нагрузку при большой просадке напряжения – сработает Brown-out detection level в микроконтроллере. Внимание! По умолчанию уровень сброса в контроллере стоит на 2.7 вольта, чтобы контроллер был чувствительнее к питанию, установите фьюзы на срабатывание защиты по питанию на 4.3 вольта и используйте трансформатор с холостым ходом не более 6 вольт!

• Используется маленький немецкий трансформатор, который просто так в магазине не купишь, если вы, конечно, не в Москве и Питере живете. Впрочем, его можно заменить на любой пятивольтовый блок питания, и кучу деталей можно на плате, в этом случае, не паять, но об этом ниже.

Заинтересовались?

Чтобы собрать реле, необходимо купить следующие элементы, цена указана в долларах, ибо сами знаете:

• Микросхема ATTINY 13 или ATTINY 13A в DIP корпусе. Но все в ваших руках, можно использовать любой микроконтроллер ATMEL, с памятью флеша не менее 1 килобайта. Только надо будет переделать плату, поправить и перекомпилировать код на си. Код максимально удобен для адаптации на другой контроллер ATMEL, достаточно поправить хидер, и перекомпилировать. $0.7

• Микросхема MOC3063. Можно заменить на MOC3063, MOC3041, 42, 43. Очень популярная и хорошая микросхема. У разных MOC разный рабочий ток внутреннего симистора. У MOC3063 самый большой — 60 мА. Так что при выборе пары MOC — внешний симистор руководствуйтесь даташитом на детали. $0.5

• Симистор BTA40. Ток открытия 50 мА. Мощность без радиатора — 200 Вт. С радиатором — 40 Ампер. При выборе симистора смотрите, чтобы МОС был согласован по току с симистором MOC-а. Это самый дорогой вариант, если вы не собирайтесь коммутировать мощную нагрузку можно вполне обойтись дешевым BTA16. $6

• Диодный мостик, плата рассчитана на мостик в DIP корпусе, типа DB107. Но можно впихнуть любой впихуемый мост. $0.14

• Трансформатор. Плата рассчитана на немецкий HAHN BV 202 0154 — выход 6 вольт 85 мА. Если использовать готовый блок питания на 5 вольт, то можно обойтись без диодного моста и трансформатора. $2.2

• Два защитных варистора. Очень важные элементы, без них просто никак. Варисторы типа 14 мм 275 вольт FNR-14K431. $0.3

• Линейный стабилизатор на 5 вольт типа LM1117-5V в DPAK. Его мощность явно излишняя, в принципе можно поставить любой пятивольтовый стабилизатор. Начинающие, внимание у этих стабилизаторов цоколевка отличается от 7805 – у того вход-земля-выход, а у LM1117 – земля-выход-вход . $0.7

• 6 SMD 1206 резисторов, 10 Ком-3 шт., 470 Ом – 2 шт. 200 Ом – 1 шт. $0.04

• 3 0.25 Вт выводные резисторы – 360 Ом – 2 шт., 36 Ом – 1 шт. $0.04

• Клеммники. Плата рассчитана на установку двух винтовых трехконтактных клемминков типа DG126-5.0-03P-14 (средний контакт используется под заземление, шаг между контактами 5 мм.). Так же можно поставить и обычные ножевые контакты. $0.5

• Конденсаторы – два электролита 25V 47 мкФ, один керамический SMD 1206 1 мФх50V и один высоковольтный 0.01х400 В. $0.15

• Один 3-5мм светодиод , любимого вашего цвета. $0.02

• Две тактовые стандартные кнопки, со штоками удобной вам длинны типа KAN0610-0731B. $0.1

• Держатель предохранителя 5×20 мм на плату (на 1 предохранитель необходимо 2 держателя) тип — S1050 (5×20) и сам предохранитель 5×20 необходимого тока- $0.04

• FR-4 односторонний стеклотекстолит. $0.7

Итого – $12. Ровно половину стоимости составляет мощный симистор BTA40. Использовать его необходимо, если вам нужна такая мощность – 40 ампер, тогда его необходимо вынести за пределы платы и посадить на хороший радиатор, который еще увеличит стоимость изделия. А если вам необходима небольшая нагрузка, смело ставьте что-нибудь типа BTA16. Он тащит 16 ампер, управляется током 35 мА. Тогда стоимость реле будет всего $7, то есть в районе 500 текущих рублей. И это притом что покупные устройства со схожими функциями стоят от 2500руб. Еще нужен корпус. В корпусе критична высота – не менее 23 миллиметра. Плата имеет размеры 49,5х77х23 и пока под какой-то конкретный корпус не разрабатывалась. В корпусе Ganita G1032B реле разместится легко, но у меня пока такого корпуса пока нет, как появится – доработаю плату точно под него.

Покупаем детали, делаем плату любым способом, хотя бы ЛУТ-ом . Дорожки необходимо залудить. Если не все, то силовые обязательно покрываем толстым слоем припоя. Затем сверлим и собираем. Должна получиться такая конструкция, версия с ножевыми контактами, в этой версии контактов заземления нет:

Вывод пинов для программирования – дело вкуса, можно просто временно припаяться к контактным площадкам. Перед установкой контроллера проверяем плату на косяки, проверяем 5 вольт и только затем впаиваем контроллер. Чтобы запрограммировать его – ищите в Интернете схему – “Программатор 5 проводков”, если будут сложности – пишите, все разжую. Фьюзы ATTINY 13 менять не надо, все как с завода – внутренний генератор на 9.6 мегагерца, делитель на 8 включен. Итого, частота чипа будет 1.2 мегагерца. Что фьюзы стоят с заводские, указывает мигание светодиода с частотой 0.5 герц в режиме задержки времени. Если контроллер не новый, устройство не работает, или мигает с другой частотой, питание в порядке – значит фьюзы стоят не на заводских настройках.

Работа с реле и программирование устройства

При включении светодиод быстро промигает количество минут, на который он запрограммирован, по умолчанию – 5 минут. После этого начнет мигать с периодом 1 секунда – реле находится в режиме отсчета времени, нагрузка отключена. После истечение заданного времени светодиод станет гореть постоянно и нагрузка включится.

Чтобы сменить время задержки необходимо просто нажать на любую кнопку в течении одной секунды, реле снова покажет мигами количество минут, и погаснет. Войти в режим программирования можно в любом состоянии устройства – режиме отсчета времени или когда реле включило нагрузку. Как только мы оказались в режиме программирования, можно нажимать на кнопки. Кнопка “минус” нижняя, ближе к контактам. Кнопка “плюс” верхняя, ближе контроллеру. После нажатия на кнопку светодиод покажет, какое время установилось. Как только он промигается, можно снова нажать на кнопку, и он покажет, сколько установлено времени снова. Чтобы сохранить настройку и выйти из режима программирования, необходимо нажать на обе кнопки одновременно, и удерживать, пока светодиод не начнет часто-часто мигать. В это время отпускаем кнопки. Реле запрограммировано и настройки сохранены.

Софт написан в Atmel Studio 6.2. Код прост как грабли, прерывания и всякие таймеры не используются. Для доработки кода под другой контроллер в хидере пропишите порты и пины для KNOPKA UP, KNOPKA DOWN, Порт выхода RELAY, Порт выхода LED. Так же надо прописать нужную тактовую частоту чипа в #define F_CPU. В студии, в свойстве проекта выберите нужный чип. В хидере уже есть секция для ATTINY13 и MEGA16, по умолчанию компилятор скомпилит код для ATTINY13. Готовая прошивка лежит в папке Release проекта, файл Holod.hex

Подключение

Вариант первый, все напрямую, чтобы запитать не сильно большую нагрузку – ватт 200. Используется симистор BTA40 без радиатора или BTA16 с небольшим радиатором.

Вариант второй – управляем нагрузкой через контактор нужной мощности. В этом случае симистор можно поставить любой, без радиатора и защищать целиком дом или квартиру. Чтобы не менять каждый раз сгоревший предохранитель при скачках напряжения в сети, вместо него можно поставить защитный автомат самого малого тока, какой сможете найти, например ампер на 5. Автомат соединить с платой можно проводами, подпаяв их вместо предохранителя.

Забрать файлы можно с моего форума http://minilabmaster.com/smf2/index.php/topic,7354.0.html Это узкоспециализированый проект, где я сделал свой уголок 🙂

63

Добавить ссылку на обсуждение статьи на форумеРадиоКот >Схемы >Цифровые устройства >Автоматика >
Добавить тег

Устройство задержки включения другого устройства

Автор: Ivan99, markin89296592110@yandex.ru Опубликовано 09.11.2015 Создано при помощи КотоРед.

И так, начнём со схемы девайса.  01_pre.jpg

Также вашему вниманию представляю структурную схему К561ЛА7:

02_pre.jpg  

 Хочу сразу назвать аналоги К561ЛА7 — это микросхема CD4011A; диод 1N4001  — аналог КД243, транзистор КТ816 — аналог КТ814, КТ8121, BD612, BD614, TIP32. Схема незамысловата, однако (как обещал) поясню принцип работы отдельных ее узлов. Начнём с RC-цепочки. Она является главным узлом, без нее ничего б не получилось. Ниже представлено ее схематичное изображение.  03.jpg

Конденсатор накапливает электрические заряды, резистор контролирует их поток. В итоге получается схема, контролирующая заряд конденсатора. Электроны движутся от плюса источника питания через резистор, который контролирует их поток, на первую обкладку конденсатора. Далее электроны переходят на вторую обкладку конденсатора, то есть происходит его заряд. Пока происходит заряд конденсатора, на выходе Vвых напряжение постепенно возрастает с 0В до напряжения источника питания (ИП). Другими словами, повышение напряжения на выходе Vвых прямопропорционально уровню заряда конденсатора. Время, через которое на выходе Vвых напряжение будет равно напряжению ИП, высчитывается по формуле:

T = R*C, где Т — постоянная времени (в секундах),  С – ёмкость конденсатора (в фарадах), R – сопротивление резистора (в омах).

 Пример: 

Допустим, у нас есть резистор на 2 мегаома и конденсатор на 15 микрофарад. Переводим мегаомы в омы (по системе Си): 2мОм=2 000 000 Ом. Микрофарады — в фарады: 15мкф=0,000015 Ф. Подставляем значения в формулу постоянной времени RC-цепочки и получаем: 

Т = 2 000 000 * 0,000015 = 30 (секунд). Получается, что в течение 30 секунд после подачи питающего напряжения, будет происходить заряд конденсатора. По истечении данного промежутка времени, он зарядится и на выходе Vвых установится напряжение, равное питающему. 

  Все бы хорошо. Можно на Vвых вешать какую-нибудь нагрузку, и схема готова! Но, нет. Не так всё просто. Допустим, питающее напряжение RC-цепи равно 5 В (вольт). На Vвых тоже будет 5 В. А каков же будет ток? Здесь нас выручает закон Ома. Возьмём сопротивление резистора 10кОм и напряжение 5 В. Сила тока вычисляется по формуле: 

I=U/R, где U — напряжение (в вольтах), R — сопротивление (в омах). 

Считаем: I = 5/10 000 = 0,0005 (А). То есть сила тока на Vвых равна 0,0005 Ампер или 0,5 мА (миллиампер). Боюсь, таким током мало что запитаешь. И здесь на помощь приходят микросхемы стандартной логики. Их уникальность состоит в том, что на их вход можно подавать логический ноль или логическую единицу с мизерными токами (порядка трех микроампер), а на их выходе управляющий ток достаточен для подключения транзисторного ключа, к примеру. Именно так я и сделал. В своей схеме я использовал отечествуенную микросхему К561ЛА7. Она и стоит недорого, и достать нетрудно, и есть зарубежный аналогCD4011A. Функциональное её назначение — 4 независимых элемента И-НЕ. Ниже представлено схематичное изображение элемента и таблица истинности:  04_pre.jpg

Вход А Вход В Выход
Низкий уровень Низкий уровень Высокий уровень
Низкий уровень Высокий уровень Высокий уровень
Высокий уровень Низкий уровень Высокий уровень
Высокий уровень Высокий уровень Низкий уровень

   Исходя из таблицы истинности, мы понимаем следующее: если на входе А и на входе В присутствует напряжение низкого уровня, то на выходе присутствует напряжение высокого уровня и наоборот. Ну а теперь смотрим на целиковую схему в начале статьи и соображаем: на оба входа логического элемента И-НЕ по истечении времени заряда конденсатора, подаётся напряжение, равное питающему (то есть Высокий уровень). На выходе элемента — Низкий уровень. Если поставим транзистор p-n-p проводимости, то получим транзисторный ключ. А это — верный шаг, который помогает всерьёз управлять какой-нибудь нагрузкой. Однако управление другим устройством при помощи транзистора означает, что: 1). диапазон питающего напряжения нагрузки равен питающему напряжению схемы задержки включения, 2). надо учитывать максимальную рассеиваемую мощность транзистора. И дабы избежать этих двух нюансов, я поставил реле. Оно коммутирует включение/выключение другого устройства. И тут есть свои плюсы: 1). гальваническая развязка, 2). возможность подключения устройств с большим напряжением и большим током. 

   Как я говорил чуть выше, микросхема К561ЛА7 — это 4 независимых друг от друга элемента И-НЕ. Согласитесь, как-то жалко из четырёх задействовать только один логический элемент. Недолго думая, я решил задействовать второй. На оба его входа также подаётся либо лог.1, либо лог.0 с RC-цепочки, на его выходе — светодиод HL1 (красный). В данном сучае он является сигнализатором заряда конденсатора (или сигнализирует о том, что управляемое устройство пока еще не включено). Что касается светодиода HL2 (зелёного), то он сигнализирует о питании катушки реле (или сигнализирует о том, что управляемое устройство включено). 

   Теперь вернёмся к вопросу о времени задержки включения. Значения сопротивления 10кОм или 10000 Ом, конденсатора — 2000мкФ или 0,002 Фарада. Перемножая оба числа, получаем время заряда Т = 20 секунд. В иделае реле должно сработать лишь через 20 секунд, но надо учитывать: происходит постепенное повышение напряжения на Vвых до напряжения ИП, а не скачообразное с 0В до напряжения ИП. Также надо учесть, что в микросхемах КМОП-технологии лог.0 — это практически нулевой потенциал, лог.1 — это напряжение, приближенное (или равное) питающему. Это означает, что на выходе элемента И-НЕ установитя сигнал низкого уровня, когда напряжение на Vвых ещё будет повышаться. И, как показала практика, при сопротивлении 10кОм и конденсаторе в 2000мкФ через 7 секунд на выходе И-НЕ устанавливаетя низкий уровень. Фууух, понимать-то понимаю, а доступно описать иногда проблематично. Надеюсь, вы меня поняли. 

   Таким образом, при вычислении Т (постоянной времени) мы имеем приблизительное представление смены на выходе логического элемента лог.1 на лог.0. А точное время узнаем эеспериментальным путём. Я собирал всё это дело на макетке и замерял секундомером этот самый промежуток времени. Он (как я уже говорил выше) равен 7 секундам. 

   Хочу отметить, что использованием лишь И-НЕ данная схема не ограничивается. Вполне реально использовать и инверторы сигнала («НЕ»), и элементы «ИЛИ». Я собирал из того, что было под рукой, а под рукой у меня оказалась именно К561ЛА7. НО: при использовании других логиеских элементов может потребоваться установка транзистора другой проводимости (n-p-n) и соответственно изменение его включения в схему, изменение включения реле, светодиода HL2 и диода VD1. Эти изменения надо делать, исходя из таблицы истинности того логиеского элемента, который вы будете использовать в схеме! 

   Что ещё хотелось отметить… Диапазон питающего напряжения устройства: 3 — 15 Вольт. Входной ток низкого и высокого уровней минимум 0,3мкА (по даташиту). И самое главное — практическое применение устройства. Например, вы уходите из дома и включаете сигнализацию. Но вам надо закрыть за собой дверь. Для этого нужно время. Другими словами, вам надо организовать задержку включения сигнализации. На помощь приходит данное устройство. В общем каждый может придумать своё применение сему девайсу. Поэтому оставлю это дело за вами 🙂

   Ниже вы можете найти печатную плату устройства и схему. Также представляю фото и видео работы Если что, вот ссылка на видео: https://www.youtube.com/watch?v=kgyGkrnQdag. Если будут вопросы, как всегда — в форум. Всего вам хорошего! 

Файлы:Схема устройства Архив 7ZipФотография

Все вопросы в Форум.

—>

Как вам эта статья?

Заработало ли это устройство у вас?

21 11 9
2

—> —> SELECTORNEWS — покупка, обмен и продажа трафика —> —>Используемые источники:

  • https://sesaga.ru/prostoe-rele-vremeni-s-zaderzhkoj-vklyucheniya.html
  • https://pikabu.ru/story/universalnyiy_taymerrele_zaderzhki_vklyucheniya_4297656
  • https://www.radiokot.ru/circuit/digital/automat/93/

</tr></trp_imgslider></table>

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации