Андрей Смирнов
Время чтения: ~14 мин.
Просмотров: 30

РадиоКот :: Преобразователь 12/220В с синусом на выходе.

KhabibraТемы / СоветыДобавлено 5 комментариев ТеорияДостижение выхода синусоидальной волны довольно сложно и не может быть рекомендовано для инверторов, потому что электронные устройства обычно не «любят» экспоненциально возрастающие токи или напряжения. Поскольку инверторы в основном изготавливаются с использованием твердотельных электронных устройств, синусоидальная форма волны обычно исключается.Электронные силовые устройства при работе с синусоидальными волнами дают неэффективные результаты, так как устройства, как правило, греются по сравнению при работе с прямоугольными импульсами.Таким образом, лучший вариант для реализации синусоидальной волны на инверторе это — ШИМ, что означает широтно-импульсную модуляцию или PWM .PWM-это усовершенствованный способ (цифровой вариант) выставления экспоненциальной формы волны через пропорционально изменяющиеся квадратные ширины импульсов, чистое значение которых вычисляется точно в соответствии с чистым значением выбранной экспоненциальной формы волны, здесь «чистое» значение относится к СРЕДНЕКВАДРАТИЧЕСКОМУ значению. Поэтому вычисленная ШИМ со ссылкой на данную синусоидальную волну может использоваться в качестве идеального эквивалента для репликации данной синусоиды. Кроме того, PWMs будет идеально совместимым с электронными приборами силы (mosfets, BJTs, IGBTS) и позволяет использование их с минимальным тепловыделением.Что такое SPWMСамый обычный метод производить PWM sinewaver (синусоидную волну) или SPWM, путем подачи нескольких экспоненциально изменчивых сигналов к входу операционного усилителя для необходимой обработки. Среди двух входных сигналов один должен быть намного выше по частоте по сравнению с другим.Использование двух входных сигналовКак упоминалось в предыдущем разделе, процедура включает подачу двух экспоненциально изменяющихся сигналов на входы операционного усилителя.Здесь операционный усилитель сконфигурирован как типичный компаратор, поэтому мы можем предположить, что операционный усилитель мгновенно начнет сравнивать мгновенные уровни напряжения этих двух наложенных сигналов в тот момент, когда они появляются или применяются к его входам.Для того чтобы операционный усилитель мог правильно реализовать необходимые синусоидальные ШИМ на своем выходе, необходимо, чтобы один из сигналов имел гораздо более высокую частоту, чем другой. Более медленная частота здесь-та, которая должна быть синусоидальной волной образца, которая должна имитироваться (реплицироваться) PWMs.В идеале, оба сигнала должны быть синусоидальными (один с более высокой частотой, чем другой), однако то же самое может быть реализовано путем включения треугольной волны (высокая частота) и синусоидальной волны (выборочная волна с низкой частотой). Как видно на следующих изображениях, высокочастотный сигнал неизменно подается на инвертирующий вход ( — ) операционного усилителя, в то время как другой более медленный синусоидальный сигнал подается на не инвертирующий ( + ) вход операционного усилителя. В худшем случае оба сигнала могут быть треугольными волнами с рекомендуемыми уровнями частоты, как описано выше. Тем не менее, это поможет в достижении достаточно хорошего эквивалента PWM sinewave.Сигнал с более высокой частотой называется несущим сигналом, в то время как более медленный сигнал выборки называется модулирующим входом.1561114248_pwm2bgeneration.pngСоздание SPWM с треугольной и сухожильной волнойОбращаясь к приведенному выше рисунку, возможно ясно визуализировать через нанесенные точки различные совпадающие или перекрывающиеся точки напряжения двух сигналов в течение заданного промежутка времени. Горизонтальная ось показывает период времени формы волны, пока вертикальная ось показывает уровни напряжения тока 2 одновременно бежит, наложенной формы волны. Рисунок информирует нас о том, как операционный усилитель будет реагировать на показанные совпадающие мгновенные уровни напряжения двух сигналов и производить соответственно меняющуюся синусоидальную ШИМ на своем выходе. Операционный усилитель (ОУ) просто сравнивает, уровни напряжения тока волны быстрого треугольника меняя мгновенно синусоидальную волну (это может также быть волна треугольника), и проверяет случаи, во время которых напряжение тока формы волны треугольника может быть ниже, чем напряжение тока волны синуса и отвечает немедленно создавать высокую логику на своих выходах.Это сохраняется до тех пор, пока потенциал волны треугольника продолжает быть ниже потенциала волны синуса, и момент, когда потенциал волны синуса обнаружен, чтобы быть ниже, чем мгновенный потенциал волны треугольника, выходы возвращаются с минимумом и выдерживают, пока ситуация не повторяется.Это непрерывное сравнение мгновенных уровней потенциала двух наложенных друг на друга волновых форм на двух входах операционных усилителей приводит к созданию соответственно изменяющихся ШИМ, которые могут точно повторять синусоидальную форму, приложенную к не инвертирующему входу операционного усилителя.Операционный усилитель и SPWMНа следующем рисунке показано моделирование вышеуказанной операции:Здесь мы можем наблюдать, как реализуется практически, и именно так операционный усилитель будет выполнять то же самое (хотя и с гораздо большей скоростью, в МС).Операция вполне очевидна и отчетливо показывает, как операционный усилитель должен обрабатывать синусоидальную волну ШИМ путем сравнения двух одновременно меняющихся сигналов на его входах, как описано в предыдущих разделах.На самом деле операционный усилитель будет обрабатывать синусоидальные ШИМ гораздо более точно, чем показанное выше моделирование, может быть в 100 раз лучше, создавая чрезвычайно однородные и хорошо измеренные ШИМ, соответствующие подаваемому образцу. Синусоида.Инвертор на ардуино две схемысписок деталейВсе резисторы 1/4 ватт, 5% CFR•10K = 4•1K = 2•BC547 = 4шт•МОП-транзисторы IRF540 = 2шт•Arduino UNO = 1•Трансформатор = 9-0-9V/220V/120V .•Батарея = 12VКонструкция на самом деле очень проста, как показано на следующем рисунке.1561114217_arduino-2.pngPin#8 и pin#9 создают ШИМ альтернативно и переключают Мосфеты с такой же ШИМ.Мосфет в свою очередь наводит на трансформатор сильно токовую форму волны SPWM, используя силу батареи, заставляя вторичку трансформатора произвести идентичную форму волны.Предлагаемая схема инвертора Arduino может быть обновлена до любого предпочтительного более высокого уровня мощности, просто заменив Мосфеты и трансформатор соответственно, в качестве альтернативы вы также можете преобразовать это в полный мост или Н-мостовой синусоидальный инверторПитание платы ArduinoИзображения формы волны для Arduino SPWMПоскольку плата Arduino будет производить выход 5V, это может быть не идеальное значение для непосредственного управления МОП-транзисторами.Поэтому необходимо поднимать уровень строба к 12V так, что Мосфеты будут работать правильно без нагрева приборов. Чтобы убедиться, что Мосфеты не запускается во время загрузки или запуска Arduino, необходимо добавить следующий генератор задержки и подключить к базе транзисторов BC547.Это защитит Мосфеты и предотвратит их сгорание во время переключения питания и при загрузке Arduino.Добавление автоматического регулятора напряженияТак же, как и на любом другом инверторе, на выходе этой конструкции ток может подняться до небезопасных пределов, когда батарея полностью заряжена.Чтобы контролировать это добавим автоматический регулятор напряжения тока. Коллекторы BC547 должны быть подключены к основаниям левой пары BC547, которые подключены к Arduino через резисторы 10K.Второй вариант инвертора с использованием микросхемы sn7404/к155лн1Важно:Чтобы избежать случайного включения перед загрузкой Arduino, простая задержка в цепи таймера может быть включена в вышеуказанную конструкцию, как показано ниже:Код программы:

/*  This code was based on Swagatam SPWM code with changes made to remove errors. Use this code as you would use any other Swagatam’s works.  Atton Risk 2017  */  const int sPWMArray[] = {500,500,750,500,1250,500,2000,500,1250,500,750,500,500}; // This is the array with the SPWM values change them at will  const int sPWMArrayValues = 13; // You need this since C doesn’t give you the length of an Array  // The pins  const int sPWMpin1 = 10;  const int sPWMpin2 = 9;  // The pin switches  bool sPWMpin1Status = true;  bool sPWMpin2Status = true;  void setup()  {  pinMode(sPWMpin1, OUTPUT);  pinMode(sPWMpin2, OUTPUT);  }  void loop()  {  // Loop for pin 1  for(int i(0); i != sPWMArrayValues; i++)  {  if(sPWMpin1Status)  {  digitalWrite(sPWMpin1, HIGH);  delayMicroseconds(sPWMArray[i]);  sPWMpin1Status = false;  }  else  {  digitalWrite(sPWMpin1, LOW);  delayMicroseconds(sPWMArray[i]);  sPWMpin1Status = true;  }  }  // Loop for pin 2  for(int i(0); i != sPWMArrayValues; i++)  {  if(sPWMpin2Status)  {  digitalWrite(sPWMpin2, HIGH);  delayMicroseconds(sPWMArray[i]);  sPWMpin2Status = false;  }  else  {  digitalWrite(sPWMpin2, LOW);  delayMicroseconds(sPWMArray[i]);  sPWMpin2Status = true;  }  }  }

Удачи.Автор: инженер-электронщик (dipIETE ), любитель, изобретатель, дизайнер схем/печатных плат, производитель.

Бюджетные модели автомобильных инверторов 12 в 220 Вольт имеют не особо качественную синусоиду на выходе. Модели помощней на 2000вт, 3000вт, 5000вт с чистой синусоидой стоят уже слишком дорого, хотя отличаются только на 6 транзисторами на выходе. Делать преобразователь с 12 на 220 своими руками на 300-500вт не особо рационально, а делать мощный выгодно, стоимость в магазине будет от 5000 руб.

Для получения постоянного тока на выходе смотрите повышающие преобразователи напряжение DC DC.

Варианты сборки

Существует 3  оптимальных способы  изготовления инвертора 12 в 220 своими руками:

  1. сборка из готовых блоков или радиоконструкторов;
  2. изготовление из источника бесперебойного питания;
  3. использование радиолюбительских схем.

У китайцев можно найти хорошие радиоконструкторы и готовые блоки для сборки преобразователей постоянной тока в переменный 220В. По цене этот способ будет самый затратный, но требуется минимум времени.

Второй способ, это апгрейд источника бесперебойного питания (ИБП), который без аккумулятора в больших количествах продаются на Авито и стоят от 100 до 300руб.

Самый сложный вариант это сборка с ноля, без радиолюбительского опыта никак не обойтись. Придется изготавливать печатные платы, подбирать компоненты, работы очень много.

Конструкция преобразователя напряжения

Рассмотрим конструкцию обычного повышающего преобразователя напряжения с 12 на 220. Принцип работы для всех современных инверторов будет одинаковым. Высокочастотный ШИМ контроллер задаёт режим работы, частоту и амплитуду. Силовая часть выполнена на мощных транзисторах, тепло с которых отводится на корпус устройства.

На входе преобразователя с 12 на 220 установлен предохранитель, защищающий от короткого замыкания автомобильный аккумулятор. Рядом с транзисторами крепится термодатчик, который следит за их нагревом. В случае перегрева инвертора 12в 220в включается система активного охлаждения состоящая из одного или нескольких вентиляторов. В бюджетных моделях вентилятор может работать постоянно, а не только при высокой нагрузке.

Силовые транзисторы на выходе

Синусоида

Форма сигнала на выходе автомобильного инвертора формируется за счёт высокочастотного генератора. Синусоида может быть быть двух видов:

  1. модифицированная синусоида;
  2. чистая синусоида, чистый синус.

Не каждый электрический прибор может работать с модифицированной синусоидой, которая имеет прямоугольную форму. У некоторых компонентов в меняется режим работы, они могут нагреваться и начать шабарчать. Похожее можно получить,если диммировать светодиодную лампу, у которой яркость не регулируется. Начинается треск и мигание.

Дорогие DC AC повышающие преобразователи напряжения 12в 220в имеют на выходе чистый синус. Стоят гораздо дороже, но электрические приборы отлично с ним работают.

Пример начинки преобразователя

Сборка из ИБП

Чтобы ничего не изобретать и не покупать готовые модули, можно попробовать компьютерный источник бесперебойного питания, сокращенно ИПБ. Они рассчитаны на 300-600вт. У меня Ippon на 6 розеток, подключено 2 монитора, 1 системник, 1телевизор, 3 камеры наблюдения, система управления видеонаблюдением. Периодически перевожу в рабочий режим отключением от сети 220, чтобы батарейка разряжалась, иначе срок службы сильно сократиться.

Коллеги электрики подключали обычный автомобильный кислотный аккумулятор к бесперебойнику, отлично работал непрерывно 6 часов, смотрели футбол на даче. В ИБП обычно встроена система диагностики гелевого аккумулятора, которая определяет его низкую емкость. Как она отнесется к автомобильному неизвестно, хотя основное отличие, это гель вместо кислоты.

Начинка ИБП

Единственная проблема, бесперебойнику могут не понравится скачки в автомобильной сети при заведённом двигателе. Для настоящего радиолюбителя эта проблема решается. Можно использовать только при заглушенном двигателе.

Преимущественно ИБП предназначены для кратковременной работы, когда пропадает  220В в розетке. При длительной постоянной работе очень желательно поставить активное охлаждение. Вентиляция пригодится для стационарного варианта и для автомобильного инвертора.

Как и все приборы, он непредсказуемо себя поведёт при запуске двигателя с подключённой нагрузкой. Стартёр машины сильно просаживает Вольты, в лучшем случае уйдёт в защиту как при выходе батареи из строя. В худшем будут скачки на выходе 220V, синусоида исказится.

Сборка из готовых блоков

Повышатель на 150 Ватт

Для сборки стационарного или автомобильного инвертора 12в 220в своими руками можно использовать готовые блоки, которые продаются на Ебее или у китайцев. Это сэкономит время на изготовление платы, пайку и окончательную настройку. Достаточно добавить к ним корпус и провода с крокодилами.

Приобрести можно и радиоконструктор, который укомплектован всеми радиодеталями, остаётся только спаять.

Примерная цена на осень 2016:

  1. 300вт – 400руб;
  2. 500вт – 700руб;
  3. 1000вт – 1500руб;
  4. 2000вт – 1700руб;
  5. 3000вт — 2500руб.

Для поиска на Aliexpress укажите запрос в поисковой строке «inverter 220 diy». Сокращение «DIY» обозначает для «сборки своими руками».

Плата на 500W, выход на 160, 220, 380 вольт

150вт

Инвертор 50 Ватт

Автоинвертор 300вт

Радиоконструкторы

Радиоконструктор  стоит дешевле, чем готовая плата. Самые сложные элементы могут быть уже находится на плате. После сборки практически не требует настройки, для которой необходим осциллограф. Разброс параметров радиокомпонентов и  номиналы неплохо подобраны. Иногда в пакетик кладут запасные детали, вдруг по неопытности ножку оторвёте.

Радиоконструктор на 1000вт

Радиоконструктор на 2000 вт

Схемы мощных преобразователей

Мощный инвертор в основном используют для подключения строительных электроинструментов при строительстве дачи или фазенды. Маломощный  преобразователь напряжения на 500вт  от мощного на 5000 — 10000 Ватт отличается количеством трансформаторов и силовых транзисторов на выходе. Поэтому сложность изготовления и цена практически одинаковые, транзисторы стоят недорого. По мощности оптимально 3000вт, можно подключить дрель, болгарку и другой инструмент.

Покажу несколько схем инверторов  с 12, 24, 36 на 220В. Такие ставить в легковой автомобиль не рекомендуется, можно случайно электрику подпортить. Схемотехника DC AC преобразователей 12 на 220 простая, задающий генератор и силовая часть. Генератор делают на популярной TL494 или аналогах.

Большое количество схем повышателей с 12v на 220v для изготовления своими руками можно найти по ссылкеhttp://cxema.my1.ru/publ/istochniki_pitanija/preobrazovateli_naprjazhenija/101-4 Всего там около 140 схем, половина из них повышающие преобразователи с 12, 24 на 220В. Мощности от 50 до 5000вт.

После сборки потребуется наладка всей схемы при помощи осциллографа, желательно иметь опыт работы с  высоковольтными схемами.

Для сборки мощного инвертора на 2500 Ватт потребуется 16 транзисторов и 4 подходящих трансформатора. Стоимость изделия будет немалая, сопоставимая со стоимостью похожего радиоконструктора. Плюсом таких затрат будет чистый синус на выходе.

<tabltd>

<divv>

Добавить ссылку на обсуждение статьи на форумеРадиоКот >Схемы >Питание >Преобразователи и UPS >

Добавить тег

Преобразователь 12/220В с синусом на выходе.

Предисловие. Около месяца назад я искал в нете схему простого преобразователя 12/220в с «чистым» синусом на выходе и к своему удивлению обнаружил, что её нет. Всё что обычно предлагается, сводится либо к получению псевдосинуса путём преобразования без использования низкочастотного повышающего трансформатора, либо к совету использовать усилитель D-класса, управляемый опорным синусоидальным напряжением. В качестве устройства управления и генерации синусоиды предлагается применять микроконтроллер. Либо даётся ссылка на смартапс. В общем, получается не слишком просто. Пришлось потратить довольно много отпускного времени, чтобы разработать схему более отвечающую требованиям простоты и «чистоты» синуса.

Характеристики: Входное напряжение 12…14В Выходное напряжение 50Гц 220+/-2В Максимальная мощность 50Вт КПД 84…90%.

Работа. Задающий генератор, источник опорного напряжения и компаратор собраны на DA2. Внешние элементы DD1 и DD2 повторяют внутреннюю структуру TL494, в той её части, которая неустойчиво работает на низких частотах (ложные срабатывания D-триггера). Далее с помощью ФНЧ подавляются верхние гармонические составляющие ШИМ. ФНЧ состоит из двух частей. Первая- DA1.1, ФНЧ с гладкой характеристикой АЧХ. Второй- DA1.2 режекторный фильтр с частотой подавления 150Гц. Анализ показывает, что в ШИМ содержаться только первая и нечётные гармоники, потому такого фильтра оказывается достаточно, чтобы сформировать «красивый» синус (осциллограмма 2). А, поскольку уровень первой гармоники практически линейно зависим от скважности, то получаем хорошо управляемый синус с точной постоянной составляющей, равной +2,5В. Далее, дополнительно получаем инверсную синусоиду (вывод 14 DA1.4). На DA3, DA5, VT1, VT2 собран первый канал УНЧ класса D. Второй канал соответственно собран на DA4, DA7, VT3, VT4. На выходе первого и второго канала УНЧ формируются противофазные синусоиды (осциллограмма 3). С выхода трансформатора, через диодный мост подаётся обратная связь по выходному напряжению. Таким образом выходное напряжение стабилизируется.

Конструкция и детали. Трансформатор TV1 это доработанный ТП60-2, который применялся в знаменитом видеомагнитофоне «Электроника ВМ-12». С трансформатора сматываются все вторичные обмотки, и вместо них наматывается одна обмотка, содержащая 33 витка обмоточного провода диаметром 0,7мм, сложенного всемеро. Можно использовать и медную шину, подходящую по площади сечения. При подаче напряжения 220В на вторичной (в преобразователе она первичная) обмотке трансформатора, на холостом ходу, напряжение составляет 6,5В. Дроссели L1 и L2 наматываются на ферритовых кольцах типоразмера 24*13*9,7мм и содержат 22 витка обмоточного провода диаметром 1,5мм. К сожалению марка и магнитная проницаемость этих ферритовых колец мне неизвестна. Они используются во вторичных цепях импульсных компьютерных блоков питания типа ATX. Транзисторы и микросхемы драйверов DA5, DA7 можно найти на материнских платах. Все транзисторы устанавливаются на один радиатор площадью 15…20см2. Для их изоляции от радиатора используются слюдяные прокладки. Конденсаторы С21…С24 типа К73-17 на напряжение 63В. Конденсатор С25 типа К73-17 на напряжение 630В. Диоды можно использовать любые, с максимальным обратным напряжением не менее 400В. Резисторы R44, R45 мощностью не менее 0,25Вт.

Настройка. 1. Отсоединить первичную обмотку трансформатора. 2. Резистором R9 установить частоту следования импульсов 100Гц на выходе DA2 (осциллограмма 1). 3. Проверить наличие синусоидального сигнала (осциллограмма 2) на выводах 7 и 14 DA1. Сигналы должны быть противофазны, но одинаковы по форме. 4. Резисторами R22 и R31 установить сигнал на выходе первого канала УНЧ согласно осциллограмме 3. Тоже проделать со вторым каналом (R24 и R34). 5. Установить подвижный контакт резистора R4 в верхнее по схеме положение. 6. Подключить к выходу преобразователя эквивалент нагрузки. Можно использовать лампу накаливания мощностью 25Вт. 7. Подключить первичную обмотку трансформатора. 8. Резистором R4 установить напряжение 220В на выходе преобразователя.

P.S. По моему схема легко поддаётся масштабированию в сторону увеличения мощности. В принципе, схема, с соответствующими доработками пригодна и для получения других выходных частот. Например, 60Гц или 400Гц. КПД, можно несколько увеличить, если заменить дроссели L1 и L2 на более мощные. Есть и недостатки. К ним можно отнести отсутствие гальванической развязки между входным и выходным напряжением, что несколько сужает область применения преобразователя. Впрочем, этот недостаток можно исправить, если использовать развязку обратной связи по напряжению с помощью оптопары. Другой неприятной особенностью является некоторый дрейф частоты. По моим наблюдениям дрейф составляет до 1,5 Гц при прогреве. Буду благодарен за доработку схемы, а также за трассировку платы, если кто-нибудь возьмётся её сделать.

Вопросы, как всегда в Форум.

—>

Как вам эта статья?

Заработало ли это устройство у вас?

51 3 1
3 3

</divv></td>—> —> SELECTORNEWS — покупка, обмен и продажа трафика —> —>Используемые источники:

  • https://usamodelkina.ru/14849-dve-shemy-invertora-12-220-volt-na-arduino.html
  • http://led-obzor.ru/preobrazovatel-s-12-na-220-svoimi-rukami
  • https://www.radiokot.ru/circuit/power/converter/19/

</tr></tabltd>

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации