Андрей Смирнов
Время чтения: ~9 мин.
Просмотров: 15

Регулируемый стабилизатор напряжения с регулируемым ограничением выходного тока

Стабилизатор на одном стабилитроне

Для сглаживания пульсаций напряжения и постоянства тока на выходе блока питания применяют стабилизаторы.  Как правило в основе стабилизатора лежит стабилитрон. Стабилитрон – это диод с малым внутренним сопротивлением которое при изменении тока практический не меняется. Благодаря этому свойству стабилитрона напряжение на нем, а следовательно, и на нагрузке практический не меняется. На рисунке ниже представлена схема простейшего стабилизатора.

схема-простейшего-стабилизатора-300x161.jpg

Такой стабилизатор подойдет для питания маломощных устройств.

Принцип работы стабилизатора на стабилитроне

Стабилизатор на одном транзисторе

Для питания нагрузки большей мощности в схему добавляют транзистор. Пример схемы показан ниже.

схема-простейшего-стабилизатора-с-транзистором-300x215.jpg

Принцип работы стабилизатора на одном транзисторе

Стабилизатор на транзисторах с защитой от КЗ

В практике радиолюбителя бывают ошибки и происходит короткое замыкание. Для уменьшения последствий в результате КЗ рассмотрим схему стабилизатора на два фиксированных напряжения и с защитой от короткого замыкания.

схема-стабилизатора-на-транзисторах-с-защитой-от-КЗ-300x273.jpg

Как видим в данную схему добавлен транзистор V4, диоды V6 и V7, и параметрический стабилизатор состоящий из резистора R1, диодов V2, V3 оснащен переключателем S2.

Принцип работы защиты стабилизатора

Стабилизатор с регулируемым выходным напряжением

В ремонте или наладке электронных устройств необходимо иметь блок питания с регулируемым выходным напряжением. Принципиальная схема стабилизаторы с регулировкой по напряжению представлена ниже.

Принцип работы стабилизатора с регулировкой напряжения

Параметрический стабилизатор состоящий из R2 и V2 стабилизируют напряжение на переменном резисторе R3. Напряжение с этого резистора поступает на управляющий транзистор. Этот транзистор включен по схеме эмиттерного повторителя, нагрузкой которого является резистор R4. Напряжение с резистора R4 подается на регулирующий транзистор V4, нагрузкой которого уже выступает наше питаемое устройство. Регулировка напряжения осуществляется переменным резистором R3, если движок резистора находится в минимальном положении по схеме, то напряжения для открытия транзисторов V3 и V4 недостаточно и на выходе будет минимальное напряжение. При вращении движка, транзисторы начинают открываться, что увеличивает напряжение на нагрузке. При увеличении тока нагрузки, падение напряжения на резисторе R1 и лампа Н1 начинает загораться, при токе в 250 мА наблюдается тусклое свечение, а при токе в 500мА и выше яркое. Транзистор V4 следует устанавливать на теплоотвод. При повышенной нагрузке более 500 мА, следует как можно быстрее выключить блок питания, так как при длительной максимальной нагрузке выходят из строя диоды в выпрямительном мостике и транзистор V4.

Данные схемы при правильной сборке не нуждаются в наладке.  Также их можно модернизировать на более большой ток и напряжения. Путем подбора радиоэлементов с нужными нам параметрами.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Успехов!

Читайте также:

Простой стабилизатор тока на LM317Простой лабораторный блок питания на LM317Импульсный стабилизатор с регулировкой по напряжениюПростое устройство для защиты от перепадов в сети

Интегральный, регулируемый линейный стабилизатор напряжения LM317 как никогда подходит для проектирования несложных регулируемых источников и блоков питания, для электронной аппаратуры, с различными выходными характеристиками, как с  регулируемым выходным напряжением, так и с заданным напряжением и током нагрузки.

Для облегчения расчета необходимых выходных параметров существует специализированный LM317 калькулятор, скачать который можно по ссылке в конце статьи вместе с datasheet LM317.

Технические характеристики стабилизатора LM317:

  • Обеспечения выходного напряжения  от 1,2 до  37 В.
  • Ток нагрузки до  1,5 A.
  • Наличие защиты от возможного короткого замыкания.
  • Надежная защита микросхемы от перегрева.
  • Погрешность выходного напряжения 0,1%.

Эта не дорогая интегральная микросхема выпускается в корпусе TO-220, ISOWATT220, TO-3, а так же D2PAK.

Назначение выводов микросхемы:

Микросхема LM317Регулируемый стабилизатор напряжения на LM317Набор для сборки регулируемого стабилизатора напряжения на LM317

Онлайн калькулятор LM317

Ниже представлен онлайн калькулятор для расчета стабилизатора напряжения на основе LM317. В первом случае, на основе необходимого выходного напряжения и сопротивления резистора R1, производится расчет резистора R2. Во втором случае, зная сопротивления обоих резисторов (R1 и R2), можно вычислить напряжение на выходе стабилизатора. <iframe>

Калькулятор для расчета стабилизатора тока на LM317 смотрите здесь.

Примеры применения стабилизатора LM317 (схемы включения)

Стабилизатор тока

Данный стабилизатор тока можно применить в схемах  различных зарядных устройств для аккумуляторных батарей или регулируемых источников питания. Стандартная схема зарядного устройства приведена ниже.

В данной схеме включения применяется способ заряда постоянным током. Как видно из схемы, ток заряда зависит от сопротивления резистора R1. Величина данного сопротивления находится в пределах от 0,8 Ом до 120 Ом, что соответствует зарядному току  от 10 мА до 1,56 A:

Источник питания на 5 Вольт с электронным включением

Ниже приведена схема блока питания на 15 вольт с плавным запуском. Необходимая плавность включения стабилизатора задается емкостью конденсатора С2:

Регулируемый стабилизатор напряжения на LM317

Схема включения с регулируемым выходным напряжением

lm317 калькулятор

Для упрощения расчета номинала резистора можно использовать несложный калькулятор, который поможет рассчитать необходимые номиналы не только для LM317, но и для L200, стабилитрона TL431, M5237, 78xx.

Скачать datasheet и калькулятор для LM317(319,9 Kb, скачано: 40 721)

Аналог LM317

К аналогам  стабилизатора LM317 можно отнести следующие стабилизаторы:

  • GL317
  • SG31
  • SG317
  • UC317T
  • ECG1900
  • LM31MDT
  • SP900
  • КР142ЕН12 (отечественный аналог)
  • КР1157ЕН1 (отечественный аналог)

Многие электронные приборы для нормальной работы требуют наличия стабильного питающего электричества. Электрическая сеть, генераторы и химические элементы питания сами по себе не могут обеспечить это условие. Поэтому современная электроника снабжена блоками питания, в которых присутствуют стабилизаторы напряжения и тока.

Стабилизатор напряжения

Под ст. напряжения (U) понимают прибор, схемотехника которого собрана таким образом, что в автоматическом режиме позволяет удерживать уровень (U) на входе потребителя неизменным в заданных пределах. Применяют устройства в тех случаях, когда на источнике питания нет стабильного электричества.

В зависимости от рода электричества приборы бывают:

  • переменного напряжения;
  • постоянного напряжения.

По принципу действия:

  • компенсационного типа;
  • параметрические.

При помощи этих устройств невозможно достичь идеального выравнивания, но лишь частично сгладить дестабилизацию.

Стабилизатор тока

Стабилизаторы тока (I) иначе называют генераторами тока. Их основная задача – вне зависимости от того, какая нагрузка подключается на выходе устройства (имеется в виду сопротивление нагрузки), выдавать постоянно стабильный ток (I). Для обеспечения этого условия все без исключения приборы имеют входное сопротивление больших значений.

Сфера применения устройств обширна. Их используют в цепях питания светодиодных светильников, газоразрядных ламп и всегда в зарядных устройствах, где используется опция изменения величины зарядного тока.

В качестве простейшей схемы ст. выступает комбинация – источник напряжения плюс резистор. Это традиционная схема питания светодиодного индикатора. Недостатком такого технического решения является потребность в использовании источника питания высокого (U). Только это условие позволяет применить высокоомный резистор для достижения эффекта стабилизации.

Виды стабилизаторов

Рассматривая стабилизаторы напряжения и тока, нужно понимать, что они бывают разного типа для разного рода электричества. Так, классификация делит их на приборы для работы в цепях постоянного либо переменного электричества. По принципу получения стабилизации бывают компенсационные и параметрические схемы.

2272989.jpg

В устройствах параметрического типа применяют радиоэлементы, у которых вольт-амперная характеристика (ВАХ) имеет нелинейный вид. Так, этими элементами для работы с переменным напряжением выступают дроссели с насыщенным сердечником ферромагнитным. Вопрос стабилизации постоянного напряжения решается за счет стабисторов и стабилитронов. Ток стабилизируют при помощи транзисторов – полевиков и биполярников.

Стабилизаторы напряжения и тока компенсационного типа работают по принципу компенсации при сравнивании фактического параметра электричества с опорным, выдаваемым определенным узлом устройства. В таких системах имеется обратная связь, через которую приходит управляющий сигнал на регулирующий элемент. Под воздействием сигнала параметры прибора управляемого изменяются пропорционально изменению входного электричества, а на выходе оно остается стабильным. Компенсационные устройства бывают непрерывного регулирования, импульсные и непрерывно-импульсные.

И параметрические, и компенсационные стабилизаторы напряжения и тока можно охарактеризовать по массогабаритным, качественным и энергетическим показателям. К качественным для стабилизаторов (U) относятся:

  • коэффициент стабилизации по напряжению на входе;
  • внутреннее сопротивление схемы;
  • коэффициент выравнивания пульсации.

Для стабилизаторов (I):

  • коэффициент по входному (U) стабилизации тока;
  • коэффициент стабилизации в процессе, когда нагрузка изменяется;
  • коэффициент ст. температурный.

К параметрам энергетического характера причисляют:

  • КПД;
  • мощность, которую регулирующий элемент способен рассеивать.

Регулируемый стабилизатор напряжения и тока

Чтобы получить стабилизацию с возможностью регулирования электрических параметров и более высоким коэффициентом, применяют сложные транзисторные схемы.

2273111.jpg

Схема состоит из:

  • Ст. тока на транзисторе VT1. Его задача – выдавать постоянный ток на коллекторе, который далее идет через усилитель и на базу регулирующего элемента.
  • Усилителя (I) на биполярнике VTy. Этот транзистор реагирует на падение напряжения на резистивном делителе.
  • Регулирующий элемент на транзисторе VT2. Благодаря ему выходное (U) либо уменьшается, либо увеличивается.

Для питания бытовых приборов применяют стабилизаторы напряжения переменного тока. Стандартные параметры таких приборов:

  • Возможность регулировки (U) на выходе, не искажая сигнал.
  • Стабилизация большого разброса напряжения на входе от 140 до 260 вольт.
  • Высокий показатель точности поддержания (U) с расхождением не более 2%.
  • Высокий КПД.
  • Наличие схем защиты от перегрузок.

Схемы стабилизаторов тока и напряжения

Параметрический прибор (U), собранный по однокаскадной схеме.

2273113.jpg

Схема состоит из:

  • Стабилитрона, на котором падает одно значение напряжения вне зависимости от (I), проходящего через него.
  • Резистора гасящего, где выделяется излишек (U) при увеличении тока.
  • Диода, выполняющего роль температурного компенсатора.

По двухкаскадной схеме.

Такие схемы имеют лучшие показатели стабилизации, так как состоят из:

  • Предварительного каскада стабилизации, выполненного на двух последовательно соединенных стабилитронах, где присутствует также термокомпенсация за счет положительного и отрицательного температурного коэффициентов радиоэлементов.
  • Оконечного каскада стабилизации на стабилитроне и гасящем резисторе, который питается от первого каскада.

Параметрический прибор тока на полевике по схеме – исток-затвор закорочены.

2273107.jpg

Так как между истоком и затвором транзистора полевого отсутствует (U), то он пропускает только определенное значение (I) в независимости от изменений напряжения на входе. Недостаток схемы связан с разбросом характеристик полевиков, отчего сложно установить точное значение стабилизируемого тока.

Стабилизатор параметрический напряжения со встроенным токовым стабилизатором.

2273110.jpg

Схема является комбинацией однокаскадного стабилизатора напряжения, где вместо гасящего сопротивления включен элемент стабилизации (I) на полевике. Такое исполнение имеет больший коэффициент стабилизации.

Стабилизатор компенсационный с (U) постоянного значения и регулированием в непрерывном режиме.

2273112.jpg

Устройство стабилизации электричества своими руками

Современные стабилизирующие устройства реализованы в микросхемах. Собрать стабилизатор напряжения и тока своими руками можно, используя LM317. Это самая простая схема, не требующая наладки.

2273115.jpg

Вместо печатной платы можно использовать пластину гетинакса или текстолита. Не обязательно вытравливать дорожки. Схема простая, поэтому контакты удобнее сделать отрезками проводов.

2273114.jpg

Заключение

Важно знать, что все регулирующие элементы в схемах могут сильно греться, особенно это касается микросхем. Поэтому их необходимо устанавливать на радиатор.

Для надежной защиты бытового оборудования среди устройств промышленного образца можно применить стабилизатор напряжения переменного тока «Ресанта».

Используемые источники:

  • https://electrongrad.ru/2018/03/20/stab-tranz-teor/
  • http://www.joyta.ru/3799-lm317-reguliruemyj-stabilizator-napryazheniya-i-toka/
  • https://fb.ru/article/374175/reguliruemyiy-stabilizator-napryajeniya-i-toka

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации