Андрей Смирнов
Время чтения: ~21 мин.
Просмотров: 1

Микроконтроллеры Ардуино для чайников

И снова привет всем любителям и новичкам программирования Arduino!)

Это третье видео (статья) из серии В«основы Arduino для начинающихВ» и сегодня мы поговорим о внутренностях платы Arduino Uno и их предназначении, а так же уделим немного внимания её микроконтроллеру Atmega328.

Предыдущие выпуски вы найдете здесь: ,1,2

Традиционно для вас доступны два варианта представления материала — видео и текст, надеюсь, оба варианта будут интересными 🙂

В прошлом выпуске мы говорили о том, какую плату для дальнейшего обучения лучше выбрать и остановились на использовании Arduino Uno третьей ревизии. Давайте же поближе познакомимся с компонентами этой платы и их предназначением, а также попробуем составить некоторую упрощенную структурную схему ее функционирования. Думаю, она позволит вам лучше понимать основной принцип взаимодействия отдельных узлов схемы и работу всей платы в целом.

С чего начинается любая схема? Конечно же, это различные компоненты, отвечающие за ее питание. Поэтому первым в нашей функциональной схеме мы выделим именно это. Вообще, у Arduino есть три пути получить энергию для работы: это питание по шине USB, от специального разъема питания на плате или входа Vin. Давайте разберем их все по отдельности.

Подключая плату к компьютеру посредством USB-интерфейса, вы подаете питание на Arduino благодаря четырехпроводной структуре шины USB, где 2 провода отвечают за передачу команд, а два других провода за непосредственное питание устройств. Именно по этим проводам Arduino и получает рабочее напряжение величиной 5В как это видно на принципиальной схеме. Так же, это напряжение поступает на вход стабилизатора напряжения, который понижает его до +3.3В, что необходимо для питания некоторых отдельных компонентов, подключаемых к Arduino, рассчитанных на это напряжение. Кстати, в качестве защиты от большого потребления тока вашей платой, на самом входе питающей линии разработчики установили небольшой предохранитель на 500мА, который, в случае различных обстоятельств, защитит USB-порт компьютера и плату Arduino от возможного выхода из строя.

все картинки кликабельны 🙂

Итак, следующим на очереди идет разъем питания для подключения, например, сетевого AC/DC-адаптера, аккумулятора или батареи. В отличие от USB-порта, где предполагается стабильное наличие напряжения 5В (или около того), в случае разъема питания ситуация складывается несколько иная, поскольку он рассчитан на подключение к нему источников питания различных напряжений. Диапазон этих значений колеблется в пределах от 6 до 20В и, при прямом подключении, это совсем не годится для компонентов нашей схемы. Поэтому разработчики поставили на входе питания стабилизаторы напряжения — один на 5В, другой на 3.3В. А так же парочку конденсаторов и диод, в качестве элементов борьбы с помехами и защиты от перепутывания полярности питания. Стоит отметить, что для стабилизатора напряжения всегда нужно напряжение, несколько выше того уровня, до которого он будет его понижать, и специфика стабилизатора такова, что уменьшение напряжения питания ниже 7В приводит к уменьшению напряжения на выводе 5V, что может стать причиной нестабильной работы устройства. Использование напряжения больше 12В может приводить к перегреву стабилизатора напряжения и выходу платы из строя. Именно поэтому, рекомендуется использовать источник питания с напряжением в диапазоне от 7 до 12В.

И, наконец, вывод Vin на плате Arduino. Если посмотреть на схему питания, то можно увидеть, что, при подключенном источнике питания к разъему, с этого вывода можно будет получить это же самое напряжение, правда, чуть меньшее из-за небольшого падения на диоде.

Ну а если теперь подключить источник питания к этому выводу, то напряжение так же попадет на стабилизатор 5В и плата будет запитана. Это удобно в случае использования различных батарей или аккумуляторов без специальных разъемов питания.

Стоит отметить, что Arduino сама выбирает источник питания с самым большим напряжением, и в этом ей помогает специальный элемент, называющийся компаратором. Если в двух словах, то компаратор, это такое устройство, которое сравнивает подаваемый на него сигнал с каким-либо опорным значением, и, если этот сигнал превышает опорное значение, то компаратор выдает на своем выходе логическую единицу (в нашем случае +5В).

Итак, с блоком питания разобрались, идем дальше.

На очереди у нас связующее звено между компьютером и программируемым нами микроконтроллером. Это еще один микроконтроллер ATmega8U2, либо, в более новых версиях ATmega16U2, который практически не заметен на плате.

Этот микроконтроллер представляет собой USART, что в переводе означает В«Универсальный синхронно-асинхронный приемо-передатчикВ». Именно он осуществляет передачу данных по самому распространенному на сегодняшний день протоколу RS-232, c помощью которого связывает COM-порт вашего компьютера и программируемый микроконтроллер.

Помните, мы говорили, что USB-кабель имеет 4 провода, два из которых питающие, а два других – сигнальные? Так вот, именно по сигнальным проводам и происходит передача данных от ПК к микроконтроллеру и обратно, а свидетельствуют о приеме, либо передаче, специальные светодиоды на плате, имеющие названия Rx и Tx, где R это сокращение слова Receive, то есть прием, а T – transmit – то есть отправление. Причем выводы Rx и Tx всегда подключаются разноименно, то есть Rx принимающего устройства соединяется с Tx передающего, и наоборот. Это видно из схемы подключения двух микроконтроллеров на плате Arduino. Для тех, кто желает знать о том, как передаются данные по USB при помощи UART, я рекомендую ознакомиться с этой ссылкой.

Ну вот, наконец, мы и подошли с вами к главному компоненту платы Arduino – микроконтроллеру Atmega328P, который, собственно, и является основным вычислительным центром этой платформы. Давайте разберемся, из каких основных частей он состоит.

В обобщенном виде, любой микроконтроллер можно разбить на три составляющие части:

1. Вычислительный блок, иначе именуемый как арифметико-логическое устройство или процессор. Также, наверняка многие из вас слышали или видели такую аббревиатуру как CPU (Central Processing Unit) что в переводе на русский значит «центральное процессорное устройство». Именно этот блок является самой главной частью системы и предназначен он для выполнения различных операций с числами. А вот уже последовательность этих операций называется программой. Каждая операция кодируется в виде числа и записывается в память микроконтроллера, но об этом, в другой раз..

2. Собственно, второй основной частью микроконтроллера и является модуль памяти. Это специализированное электронное устройство, которое представляет собой набор ячеек, в каждой из которых может храниться одно число. Именно здесь хранится написанная вами программа и другие команды микроконтроллера. Память делится на оперативную — ОЗУ (оперативное запоминающее устройство) и постоянную – ПЗУ (постоянное запоминающее устройство. Принципиальная разница между этими видами памяти в том, что в случае с оперативной памятью, при выключении питания микроконтроллера, записанные значения не сохраняются и существуют только до тех пор, пока это питание присутствует. Например, такая память используется для хранения каких-либо промежуточных результатов вычислений. А вот данные, хранимые в постоянной памяти, наоборот, никак не зависят от наличия питания и могут быть использованы микроконтроллером сразу же после включения. В такую память, например, записывается вся разработанная вами программа, и она никуда не пропадет при повторной подаче напряжения на микроконтроллер.

3. Наконец, третьей составляющей частью микроконтроллера являются так называемые порты ввода-вывода. Если процессор и память находятся где-то в глубине корпуса микроконтроллера и мы их не видим, то порты ввода-вывода всегда на виду – вот они, в виде небольших металлических ножек.

Конечно же, не стоит забывать, что некоторые ножки отвечают за питание и прочие компоненты, подключаемые к микроконтроллеру, но большинство из них все-таки являются портами ввода-вывода, отвечающими за непосредственное управление микроконтроллером различными датчиками, модулями, светодиодами, транзисторами и так далее. Подавляющее большинство этих портов были выведены разработчиками Arduino по краям платы и, для удобства работы, подписаны.

Именно с этими портами нам и предстоит работать в дальнейшем, ведь суть любой микропроцессорной системы сводится к управлению чем-то извне, а иначе, зачем нам микроконтроллеры? 🙂

Как уже было сказано ранее, центральный процессор является основным мозгом микроконтроллера и именно он управляет модулем памяти и портами ввода-вывода. Более подробно о работе с портами ввода-вывода мы поговорим уже через один выпуск, когда будем работать со светодиодом и кнопкой, ну а сейчас я бы хотел заострить внимание на еще одном компоненте на плате, который мы не назвали – это генератор тактовых импульсов или кварцевый резонатор.

Не пугайтесь таких сложных названий, на самом деле, все просто – для работы любого микроконтроллера нужен некий генератор импульсов, благодаря которому он сможет осуществлять свою деятельность по последовательному выполнению команд. Например, мы написали с вами программу мигания светодиодом 10 раз в секунду. Но как микроконтроллер узнает, не имея никакого представления о длительности одной секунды, когда ему пора включить светодиод, а когда пора выключить? Именно благодаря кварцевому резонатору, который, в зависимости от его номинала, генерирует определенное число импульсов за одну секунду, это число имеет единицы измерения – герцы и называется частотой. Например, частота, равная 5Гц означает 5 импульсов в секунду, 10Гц — десять импульсов и так далее.

Так же на плате Arduino вы могли заметить небольшую кнопку – она называется кнопкой сброса или RESET, и при нажатии на нее переводит наш микроконтроллер в исходную позицию, с которой он начинал свою работу.

Итак, мы познакомились с вами с основными составляющими платы Arduino и совсем немного поговорили о микроконтроллере ATmega. Хочу заметить, что изучению структуры и принципам работы микроконтроллеров можно посвятить большой отдельный курс, поэтому я не стал углубляться в эту тему и рассчитываю на вашу дальнейшую любознательность и стремление изучить и понять как можно большее в этой интересной сфере. В качестве дальнейшего учебного пособия по изучению микроконтроллеров AVR, не сочтите за рекламу, я советую вам книгу Белова А.В., в которой, на мой взгляд, достаточно доступным языком описаны все нюансы работы с микроконтроллерами.

440

Arduino это удобное средство для прототипирования, создания роботов и проектирования и построения прочих электронных устройств.

Arduino UNO построено на микроконтроллере ATmega328. На плате ардуины находятся 14 цифровых входоввыходов, 5 из них могут использоваться как ШИМ (PWM), 6 входов аналогового сигнала, а так же кварц на 16 МГц, разъем USB, вход питания и контакты для ICSP программирования.

Содержаниескрыть1Характеристики Arduino UNO1.1Питание1.2Память1.3Входы и выходы1.4Связь1.5Программирование1.6Защита USB от перегрузок2Работа

Характеристики Arduino UNO

Микроконтроллер ATmega328
Рабочее напряжение
Напряжение питания (рекомендуемое) 7-12В
Напряжение питания (предельное) 6-20В
Цифровые входы/выходы 14 (из них 6 могут использоваться в качестве ШИМ-выходов)
Аналоговые входы 6
Максимальный ток одного вывода 40 мА
Максимальный выходной ток вывода 3.3V 50 мА
Flash-память 32 КБ (ATmega328) из которых 0.5 КБ используются загрузчиком
SRAM 2 КБ (ATmega328)
EEPROM 1 КБ (ATmega328)
Тактовая частота 16 МГц

Питание

Arduino Uno может быть запитан от USB либо от внешнего источника питания — тип источника выбирается автоматически.

В качестве внешнего источника питания (не USB) может использоваться сетевой AC/DC-адаптер или аккумулятор/батарея. Штекер адаптера (диаметр — 2.1мм, центральный контакт — положительный) необходимо вставить в соответствующий разъем питания на плате. В случае питания от аккумулятора/батареи, ее провода необходимо подсоединить к выводам Gnd и Vin разъема POWER.

Напряжение внешнего источника питания может быть в пределах от 6 до 20 В. Однако, уменьшение напряжения питания ниже 7В приводит к уменьшению напряжения на выводе 5V, что может стать причиной нестабильной работы устройства. Использование напряжения больше 12В может приводить к перегреву стабилизатора напряжения и выходу платы из строя. С учетом этого, рекомендуется использовать источник питания с напряжением в диапазоне от 7 до 12В.

Novyj-Vysokoe-kachestvo-AC-100-240-V-dlya-DC-4-5-V-1A-4-5-Vt.jpg

Ниже перечислены выводы питания, расположенные на плате:

  • VIN. Напряжение, поступающее в Arduino непосредственно от внешнего источника питания (не связано с 5В от USB или другим стабилизированным напряжением). Через этот вывод можно как подавать внешнее питание, так и потреблять ток, когда устройство запитано от внешнего адаптера.
  • 5V. На вывод поступает напряжение 5В от стабилизатора напряжения на плате, вне независимости от того, как запитано устройство: от адаптера (7 — 12В), от USB (5В) или через вывод VIN (7 — 12В). Запитывать устройство через выводы 5V или 3V3 не рекомендуется, поскольку в этом случае не используется стабилизатор напряжения, что может привести к выходу платы из строя.
  • 3V3. 3.3В, поступающие от стабилизатора напряжения на плате. Максимальный ток, потребляемый от этого вывода, составляет 50 мА.
  • GND. Выводы земли.
  • IOREF. Этот вывод предоставляет платам расширения информацию о рабочем напряжении микроконтроллера Ардуино. В зависимости от напряжения, считанного с вывода IOREF, плата расширения может переключиться на соответствующий источник питания либо задействовать преобразователи уровней, что позволит ей работать как с 5В, так и с 3.3В-устройствами.

Память

Объем флеш-памяти ATmega328 составляет 32 КБ (из которых 0.5 КБ используются загрузчиком). Микроконтроллер также имеет 2 КБ памяти SRAM и 1 КБ EEPROM (из которой можно считывать или записывать информацию с помощью библиотеки EEPROM).

Входы и выходы

С использованием функций pinMode(), digitalWrite() и digitalRead() каждый из 14 цифровых выводов может работать в качестве входа или выхода. Уровень напряжения на выводах ограничен 5В. Максимальный ток, который может отдавать или потреблять один вывод, составляет 40 мА. Все выводы сопряжены с внутренними подтягивающими резисторами (по умолчанию отключенными) номиналом 20-50 кОм. Помимо этого, некоторые выводы Ардуино могут выполнять дополнительные функции:

  • Последовательный интерфейс: выводы 0 (RX) и 1 (TX). Используются для получения (RX) и передачи (TX) данных по последовательному интерфейсу. Эти выводы соединены с соответствующими выводами микросхемы ATmega8U2, выполняющей роль преобразователя USB-UART.
  • Внешние прерывания: выводы 2 и 3. Могут служить источниками прерываний, возникающих при фронте, спаде или при низком уровне сигнала на этих выводах. Для получения дополнительной информации см. функцию attachInterrupt().
  • ШИМ: выводы 3, 5, 6, 9, 10 и 11. С помощью функции analogWrite() могут выводить 8-битные аналоговые значения в виде ШИМ-сигнала.
  • Интерфейс SPI: выводы 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). С применением библиотеки SPI данные выводы могут осуществлять связь по интерфейсу SPI.
  • Светодиод: 13. Встроенный светодиод, подсоединенный к выводу 13. При отправке значения HIGH светодиод включается, при отправке LOW — выключается.

ArduinoUnoFront-350x290.jpg

В Arduino Uno есть 6 аналоговых входов (A0 — A5), каждый из которых может представить аналоговое напряжение в виде 10-битного числа (1024 различных значения). По умолчанию, измерение напряжения осуществляется относительно диапазона от 0 до 5 В. Тем не менее, верхнюю границу этого диапазона можно изменить, используя вывод AREF и функцию analogReference(). Помимо этого, некоторые из аналоговых входов имеют дополнительные функции:

  • TWI: вывод A4 или SDA и вывод A5 или SCL. С использованием библиотеки Wire данные выводы могут осуществлять связь по интерфейсу TWI.

Помимо перечисленных на плате существует еще несколько выводов:

  • AREF. Опорное напряжение для аналоговых входов. Может задействоваться функцией analogReference().
  • Reset. Формирование низкого уровня (LOW) на этом выводе приведет к перезагрузке микроконтроллера. Обычно этот вывод служит для функционирования кнопки сброса на платах расширения

Смотрите также соответствие выводов Arduino и ATmega328. Распиновка для микроконтроллеров ATmega8, 168 и 328 идентична.

Связь

Arduino Uno предоставляет ряд возможностей для осуществления связи с компьютером, еще одним Ардуино или другими микроконтроллерами. В ATmega328 имеется приемопередатчик UART, позволяющий осуществлять последовательную связь посредством цифровых выводов 0 (RX) и 1 (TX). Микроконтроллер ATmega16U2 на плате обеспечивает связь этого приемопередатчика с USB-портом компьютера, и при подключении к ПК позволяет Ардуино определяться как виртуальный COM-порт. Прошивка микросхемы 16U2 использует стандартные драйвера USB-COM, поэтому установка внешних драйверов не требуется. На платформеWindows необходим только соответствующий .inf-файл. В пакет программного обеспечения Ардуино входит специальная программа, позволяющая считывать и отправлять на Ардуино простые текстовые данные. При передаче данных через микросхему-преобразователь USB-UART во время USB-соединения с компьютером, на плате будут мигать светодиоды RX и TX. (При последовательной передаче данных посредством выводов 0 и 1, без использования USB-преобразователя, данные светодиоды не задействуются).

Библиотека SoftwareSerial позволяет реализовать последовательную связь на любых цифровых выводах Arduino Uno.

В микроконтроллере ATmega328 также реализована поддержка последовательных интерфейсов I2C (TWI) и SPI. В программное обеспечение Ардуино входит библиотека Wire, позволяющая упростить работу с шиной I2C; для получения более подробной информации см. документацию. Для работы с интерфейсом SPI используйте библиотеку SPI.

Программирование

Arduino Uno программируется с помощью программного обеспечения Ардуино (скачать). Для этого из меню Tools > Board необходимо выбрать «Arduino Uno» с микроконтроллером, соответствующим вашей плате. Для получения более подробной информации см. справку и примеры.

Programmirovanie.jpg

ATmega328 в Arduino Uno выпускается с прошитым загрузчиком, позволяющим загружать в микроконтроллер новые программы без необходимости использования внешнего программатора. Взаимодействие с ним осуществляется по оригинальному протоколу STK500 (описание, заголовочные файлы C).

Тем не менее, микроконтроллер можно прошить и через разъем для внутрисхемного программирования ICSP (In-Circuit Serial Programming), не обращая внимания на загрузчик; более подробно об этом см. соответствующие инструкции.

Исходный код прошивки микроконтроллера ATmega16U2 (или 8U2 на платах версии R1 и R2) находится в свободном доступе. Прошивка ATmega16U2/8U2 включает в себя DFU-загрузчик (Device Firmware Update), позволяющий обновлять прошивку микроконтроллера. Для активации режима DFU необходимо:

  • На платах версии R1: замкнуть перемычку на обратной стороне платы (возле изображения Италии), после чего сбросить 8U2.
  • На платах версий R2 и выше — для упрощения перехода в режим DFU присутствует резистор, подтягивающий к земле линию HWB микроконтроллера 8U2/16U2.

После перехода в DFU-режим для загрузки новой прошивки можно использовать программное обеспечение Atmel’s FLIP (для Windows) или DFU programmer (для Mac OS X и Linux). Альтернативный вариант — прошить микроконтроллер через разъем для внутрисхемного программирования ISP с помощью внешнего программатора, однако в этом случае DFU-загрузчик затрется. Для получения более подробной информации см. эти инструкции, составленные пользователями.

Защита USB от перегрузок

В Arduino Uno есть восстанавливаемые предохранители, защищающие USB-порт компьютера от коротких замыканий и перегрузок. Несмотря на то, что большинство компьютеров имеют собственную защиту, такие предохранители обеспечивают дополнительный уровень защиты. Если от USB-порта потребляется ток более 500 мА, предохранитель автоматически разорвет соединение до устранения причин короткого замыкания или перегрузки.

Работа

Самый первый и простой пример работы микроконтроллера это заставить его мигать светодиодом. Подключаем по схеме

Заливаем прошивку

И смотрим на результат

Ардуино – один из популярнейших микроконтроллеров для создания разнообразных автоматизированных систем. Благодаря множеству библиотек и вспомогательных модулей на любой вкус, будь то датчик движения или wi-fi адаптер, плата стала любимцем конструкторов.

Сейчас можно увидеть большое разнообразие изделий на основе Ардуино и столько же инструкций по тому, как и что делать. Но давайте разберёмся, что собой представляет данный микроконтроллер и к чему стоит быть готовым новичкам. А также узнаем, какой язык программирования используется в основе большинства библиотек.

arduino-uno.jpg

Характеристики МК Arduino

В зависимости от того, какой микроконтроллер Ардуино вы приобрели, его характеристики будут различаться. Так, в Arduino micro pro чуть больше пинов и другой объём постоянной памяти, что позволяет подгрузить дополнительные библиотеки.

Но, в целом, любой микроконтроллер этой системы представляет собой простое AVR устройство с уже заготовленной прошивкой. Пользователю остаётся лишь добавить подходящие библиотеки или использовать уже имеющиеся. После чего можно моментально приступать к работе. На всех платах имеется USB-UART порт для упрощения работы с устройством.

Достоинствами Ардуино являются:

  1. Библиотеки, которые создаются не только авторами платы, но и сообществом. Благодаря этому можно найти подходящий инструментарий под любую задачу. Но здесь кроется и главный недостаток. Никто не контролирует качество кода, и в результате большую часть библиотек из свободного доступа вам придётся вручную модифицировать или переписывать десятки раз. Поэтому многие предпочитают самостоятельно написать код и базовый функции, если есть такая возможность.
  2. Небольшие размеры Ардуино микро. Это позволяет создавать профессиональные платы, не занимающие большого пространства в корпусе конечного изделия. А габариты крайне важны во всех сферах, от умного дома до создания собственной теплицы.
  3. Большое количество модулей. На микроконтроллер Arduino вы найдёте любой необходимый модуль. Будь то датчик дыма или освещённости, и даже небольшой динамик. Помимо этого, можно и сэкономить, ведь периферию создаёт само сообщество, благодаря чему можно покупать дополнительные микроконтроллеры за копейки.
  4. Низкий порог вхождения. Чтобы обучиться работе с Ардуино, вам потребуется парочка свободных вечеров. Даже если ранее вы не занимались радиотехникой и никогда не паяли, а программирование для вас остаётся необъяснимой магией. Дело в том, что большая часть общественных библиотек написана наподобие высокоуровневых языков программирования. Для управления системой достаточно знать английский на разговорном уровне и хоть примерно представлять, на что вообще способна Ардуино микро про.

Сам микроконтроллер строится на одной схеме, на ней присутствует несколько основных элементов, о которых мы расскажем чуть ниже. В зависимости от выбранного модуля, может различаться объём постоянной памяти и количество пинов. Последнее влияет на то, сколько устройств вы сможете подсоединить к своему микроконтроллеру. Программная часть реализована на низкоуровневом языке программирования, что позволяет с точностью управлять любыми телодвижениями платы, вплоть до малейших сигналов и написания полноценных самообучающихся нейросетей.

pro-mini.jpg
Плата Ардуино pro mini и сенсор расстояния

Вся информация с модулей и датчиков передаётся на центральный микроконтроллер, он выводит её в консоль и обрабатывает согласно заложенному скрипту.

В качестве дополнения к системе имеются не только датчики, но и разнообразные индикаторы, они необходимы для оживления системы. Например, если вы хотите услышать истошный писк, если вдруг появится протечка в кране.

Или же, чтобы огонёк на кнопке запуска горел красным, когда устройство включено. Всё это также контролируется и настраивается на программном уровне.

Конечно, если вы никогда раньше не имели опыта с программным кодом и не знаете базовых алгоритмов – лучше пользоваться заготовленными библиотеками. А вот для программистов-инженеров на Ардуино полностью развязаны руки, о чём мы поговорим чуть ниже. Но, для начала, давайте разберём аппаратную часть.

Аппаратная часть Arduino

Для начала стоит уяснить, что собой представляет микроконтроллер. По логике, это небольшое устройство, к которому подключаются все остальные элементы системы. Ардуино должен координировать их работу при помощи прописанных в нём скриптов, выдавая соответствующие электрические сигналы. Для стандартного МК Ардуино сигналом является 5 вольт – это единичка, а отсутствие сигнала – нолик.

Именно на таком принципе построено программирование двоичным кодом. Но от такой системы мы уже давно ушли, и потому к устройству можно подключать трансформаторы переменного тока и дополнительные резисторы, ведь некоторым модулям требуется ток в 3.2-4.7 Вольт.

mega.jpg

Соответственно, аппаратная часть Ардуино в стандартной комплектации представлена чипом с постоянной памятью, набором из резисторов и транзисторов, а также несколькими пинами. Такая простая конструкция позволяет пользователю самому навешивать «улучшения» по необходимости.

С «коробки» в микроконтроллер устанавливается стандартная прошивка, способная распознавать базовые АТ команды. Пользователь может переустановить её или перепрошить Ардуино по желанию, но стоит учитывать, что без должного опыта вы можете получить бесполезную и неработающую плату.

Как несложно догадаться, изначально Ардуино – это лишь инструмент, который позволяет координировать работу всей системы. А делает он это при помощи встроенных в него библиотек, которые можно устанавливать в систему дополнительно, по необходимости. Вплоть до того, что вы можете поставить вспомогательную карту памяти, если не хватает места. А сами же библиотеки написаны на низкоуровневом C++, который обеспечивает полный контроль над работой микроконтроллера, но имеет и ряд весомых недостатков, о которых мы и поговорим ниже.

Язык программирования Arduino

Ардуино полностью построен на низкоуровневом языке С++, у которого имеются как свои почитатели, так и ненавистники. Перед тем, как разобрать его достоинства и недостатки, стоит понять, что любой мультипарадигмальный ЯП (язык программирования, способный решать различные задачи, используя базовые парадигмы) является лишь инструментом.

coding.jpg

Даже самый неудобный и кривой ЯП в руках хорошего специалиста способен на всё, чему существуют тысячи подтверждений. Но если рассматривать плюсы С++, то мы получим:

  1. Мультипарадигмальность языка. Вы можете применять как ООП, так и более сложные его вариации, и писать простейшие функции с переменными. На С++ построены все базовые алгоритмы сортировки и поиска, а соответственно, легкореализуемы.
  2. Большое количество информации. С++ применяется во всех сферах программирования, от создания игр и программ до написания базовых прошивок для процессоров и плат. Именно последние нам и нужны на Ардуино.
  3. Язык является крайне пластичным. В отличие от Java, поклонники которого часто критикуют отсутствие «подушек безопасности» этого ЯП, С++ даёт вам полную свободу, вплоть до контроля ресурсов, расходуемых на каждую операцию.

Из его главных достоинств выплывают и некоторые недостатки:

  1. Отсутствие «подушек безопасности». Другие языки всячески защищают пользователя, не давая компилятору обработать код, пока не проверят тысячи параметров. И сюда входит не только семантика языка, но и переменные, расход памяти и некоторые элементы алгоритмов. Это вынуждает подстраиваться под особенности компиляторов и делать «костыли», но вот отсутствие такой защиты заставляет вас часами выискивать ошибку в функции.
  2. Нет нормального отображения ошибки. Даже в современных средах программирования на С++ поиск одной ошибки может занять у вас несколько часов, пока не выяснится, что по какой-то причине цикл с предусловием не захотел воспринимать «!=», как отрицание. Или вы случайно создали непрерывную рекурсию, забыв написать один «return». И когда объёмы кода увеличиваются, таких мелких ошибок накапливается масса, а вспомнить каждую функцию, написанную для библиотеки, и уж тем более найти, какая из них конфликтует с новой, не так и просто. Здесь не помогает ни хорошо организованный DOM, ни своевременные комментарии.

Однако, если вас всё же не устраивают особенности этого языка, то всегда можно испытать С99, применяемый на микроконтроллерах конкурентов. Там все недостатки усугубляются в разы, а библиотеки функций становятся поистине непонятными.

Что может микроконтроллер Arduino

По сути, микроконтроллер Ардуино способен лишь посылать электрические сигналы и принимать их от модулей, подсоединённых к нему. Однако, если рассматривать микроконтроллер в другой перспективе, то он способен практически на всё, достаточно заложить в него качественный код и подключить нужные датчики.

robot.jpg

Интересные проекты на базе МК Arduino

На Ардуино уже создано тысячи проектов, а многие инженеры ведут собственные блоги или каналы на YouTube, где вы можете ознакомиться с их творчеством. Из интересных идей, стоит отметить следующие:

  1. Умный дом. Практически каждый элемент умного дома можно создать собственными руками. От автоматических штор и дверей до сигнализаций и регулируемого освещения.
  2. Кодовые замки. Проект простой, и подойдёт для новичков. Достаточно использовать любой датчик и сделать замки, реагирующие на определённый ритм постукиваний или же на приближение вашего смартфона.
  3. Автоматизированные теплицы.

Проектов на деле в тысячи раз больше, вам остаётся лишь подключить свою фантазию, а инструментарием послужит Ардуино.

Используемые источники:

  • story/vyipusk_3_osnovyi_arduino_dlya_nachinayushchikh_arduino_iznutri__struktura_sostavlyayushchie_i_ikh_naznachenie_mikrokontroller_atmega328p_4497606
  • https://ampexpert.ru/mikrokontroller-arduino-uno/
  • https://arduinoplus.ru/mikrokontrolleri-arduino-dlya-chainikov/

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации