Андрей Смирнов
Время чтения: ~12 мин.
Просмотров: 11

РадиоКот :: Универсальная отладочная плата Demo plata

В блоге событие! У нас появился новый автор. Знакомьтесь, Волков Евгений (ewgen40477). Евгений предложил макетную плату (Demo plata), схемное решение которой очень удобно для отладки различных электронных устройств. Большим плюсом данной платы считаю то, что она не привязана ни к какому конкретному микроконтроллеру. Плата будет работать со всем, что Вы в нее вставите!

Автора можно найти так: здесь в коментах, по мылу ewgen40477[гав]yandex.ru или UA9-OTA. А вот, собственно, и статья…

Вот так выглядит собранная Demo plata

Как видно из фото, плата насыщена периферией, но в тоже время не содержит ни чего дефицитного. Плата собрана блочно, а значит, если Вам не нужна какая-либо часть платы ее можно не собирать – соберете, когда понадобиться.

064-demo-plata-scheme.zip(9630 Загрузок) Схема разделена на блоки – выбирайте, что Вам нужно, остальное можно допаять по надобности.

064-demo-plata-PCB.zip(8286 Загрузок) Плата односторонняя с минимумом перемычек, но содержит SMD компоненты (они здорово спасают от перемычек и загромождения ТН компонентами «лица» платы). В Сплинте есть слой надписей на «лице» платы. Очень советую их нанести на плату — проще потом будет работать. Наносятся они ЛУТом (после того как плата протравлена, отмыта, залужена и просверлена) прямо по стеклотекстолиту. Отмоченный, отмытый и высушенный тонерный рисунок надписей необходимо вскрыть лаком, чтоб он не повредился во время эксплуатации (естественно, лак должен быть устойчив к жидкости которой Вы моете плату после пайки).

Паяная сторона платы печатной платы Demo plata

Плату можно запитать от 12В или 5В. Для выбора питающего напряжения есть разъем J-1. Джампер разъема J-1 выставляется в следующем порядке: — если плата питается от источника +5 вольт, то джампер J-1 ставится между выводами OUT и +5(+12). — если плата питается от источника +12 вольт, то джампер J-1, в обязательном порядке, ставим между выводами OUT и LM(+5).

Джампером разъема J-4 выставляется питание LCD индикатора. Внимание! Вариант подачи питания зависит от используемого LCD индикатора. Внимательно смотрите даташит! Разъем коммутирует питание межу первой и второй ножками индикатора, на плате нарисовано, что куда подается.

Естьвозможность регулировки подсветки LCD индикатора, для этого предусмотрен разъем J-5. — в положении джампера 1-2 на контакт А подается управляющее напряжение (рядом с разъемом J-4 стоит подстроечный резистор для регулировки контрастности); — в положении 2-3 подключаются ограничивающие резисторы и на контакт А подается +5 вольт.

К особенностям платы можно отнести применения двунаправленных ключей управления LED индикаторов (можно управлять как ОА так и ОК).

Для создания нужных соединений на плате используются проводки с разъемами BLS на обоих концах. (GetChiper: Самому так нравиться соединять различные части устройства,  даже статью написал )

(Visited 7 497 times, 4 visits today)

Плата отладочная является достаточно полезным инструментом при разработке различных электронных устройств. Но можно ли создать её своими руками? Или же следует рассчитывать только на промышленные аналоги? Какие особенности есть у этого устройства? Об этом мы сегодня и поговорим.

Общая информация

Когда говорят об этой теме, то чаще всего понимается отладочная плата для Atmega8 или иного подобного микроконтроллера, в основе которого лежит 8-ми или 16-битный принцип работы. Но мир идёт вперёд. Наступает пора 32-битных микроконтроллеров. В связи с этим мы рассмотрим то, что может быть доступно нам уже сейчас. Особое внимание следует уделить отладочной плате STM32, хотя в рамках статьи рассматриваются всё же AVR. Но сначала представим общую картину.

1975410.jpg

Появление 32-битных микроконтроллеров позволило значительно расширить объем задач, которые они могли выполнить. Но необходимо оптимизировать принимаемые решения и создаваемую технику. Хотя и старым образцам будет уделено внимание, ведь не отметить их универсальность и добротность просто нельзя.

Что же собой представляет STM32?

Конечно, наибольший интерес в рамках статьи представляет плата отладочная. Но чтобы разобраться в дополнительном моменте, давайте рассмотрим основной. Допустим, у нас есть STM32F103C8T6. Отладочная плата представляет собой конструкцию с микроконтроллером, что строится на ядре ARM Cortex-M3. Оно обладает значительным количеством преимуществ, главное из которых – универсальность. Кстати, сейчас Cortex-M3 является полноценным индустриальным стандартом. Плата отладочная представляет собой поверхность, на которой могут взаимодействовать все ножки STM32, обеспечивая выполнение имеющихся задач.

Приступаем к подготовке

Итак, нам нужна плата отладочная. Какие у неё должны быть параметры? Купить её или сделать самостоятельно? Каков у неё должен быть размер? Вот с последнего вопроса мы и начнём. Первоначально необходимо подобрать такое устройство, чтобы все механизмы и составляющие элементы могли успешно разместиться на нем. В большинстве случаев достаточно, чтобы отладочная плата для AVR имела стороны в пятнадцать сантиметров. Такой размер подходит благодаря компактности и возможностям прибора.

1975411.jpg

Прежде чем приступать к изготовлению или покупке платы, необходимо первоначально составить её схему. Для этого можно разложить элементы на бумаге и провести линии соединения между ними. Если всё получилось без проблем – отлично, значит, можно приступать к практическим действиям. Тогда нужно просто разместить и припаять все требуемые элементы, и всё – плата готова. Так это выглядит вкратце. А сейчас давайте рассмотрим все более детально.

Планирование

Необходимость применения отладочных плат рано или поздно настигает каждого радиолюбителя. Это своеобразная отладка на уровне железа. При желании можно купить готовую плату на любой вкус. Но ведь нас интересует подробный разбор данной темы? Поэтому мы рассмотрим, как создаётся отладочная плата своими руками.

Первоначально необходимо определиться – разрабатываем мы плату под конкретные потребности или же делаем универсальную. Поскольку первый вариант является довольно специфическим, в рамках статьи будет рассмотрен второй. Необходимо задуматься об основании. Если посмотреть на большинство случайных любительских плат, то следует отметить, что они выглядят очень неряшливо. Провода торчат как угодно, и рассмотреть, что с чем соединено, может быть несколько проблематично. Поэтому необходимо предусмотреть возможность для их закрепления, чтобы они не пересекались.

1975412.jpg

Если создавать под конкретный случай и разрабатывать схему, то можно протравить дорожки. Этот вариант является наиболее интересным. Кстати, довольно популярной является ситуация, когда используется универсальная схема, а дорожки то наносятся, то удаляются. Чтобы лучше разобраться, давайте рассмотрим несколько примеров.

Плата питания

Допустим, мы строим что-то значительное по размеру, и наше устройство складывается из нескольких модулей. В данном случае схема отладочной платы должна предусматривать возможность получения на входе постоянного или переменного напряжения. Чтобы добиться нескольких способов подключения, нужно подумать о разъемах и клеммниках. Для обеспечения работы нужно предусмотреть не только батареи, но и стабилизатор. А на случай легких перегрузок и сопутствующих перегревов можно использовать и небольшой радиатор.

Плата микроконтроллера

А вот и самое интересное. Вполне возможно, что отладочные платы для микроконтроллеров и вспомогательных элементов – это сложнейшие составляющие. Ведь они являются «мозгами» технических устройств. Для успешного старта в сфере отладочных плат начинать со сложных 32-битных контроллеров нежелательно. Можно начать с чего-то попроще. Например, с ветерана мехатронных разработок ATmega8. Чтобы не усложнять ситуацию дополнительно, можно обойтись построением односторонней печати.

А что делать, если требования выходят за эти рамки? Использовать двухстороннюю печать? Как вариант – да. Но если превышение возможностей незначительно, то часто можно обойтись без монтажных перемычек. Лучше вынести разъемы портов и цепи подтяжки на отдельных миниатюрных платочках. Такой подход позволит облегчить разводку платы микроконтроллера. Но это только общая теория. Давайте же поговорим о реализации на практике.

Ручное изготовление печатной платы

Первоначально нам необходима бумага, на которой будет нарисована разводка для печатной платы. Желательно, чтобы она была тонкой. Это важно для достижения точного сверления отверстий. Чтобы не возникло никаких неожиданностей, бумагу можно приклеить к картону с помощью клея. Далее следует вырезать приклеенный рисунок. Что ж, шаблон для сверления уже готов. Подбираем заготовку фольгированного стеклотекстолита необходимого размера. Прикладываем бумажно-картонный шаблон и обрисовываем его по периметру карандашом или маркером. Затем стеклотекстолит режем по нанесённым нами линиям, используя ножницы по металлу, или же пилим ножовкой. Склеиваем части с помощью клея.

Кстати, небольшой совет: не нужно мазать всю поверхность, достаточно оставить по капле клея в каждом из четырех углов. Если нет желания ждать – используйте «Момент». Он позволит продолжить работу через несколько секунд.

Сверлим отверстия

Для этой цели наилучшим образом подойдёт специальный мини-станок. Но можно воспользоваться и ручным инструментарием. Для подавляющего большинства целей с лихвой хватает сверла с диаметром 0,8 мм. Следует отметить, что качественная плата может не получиться с первого раза из-за сложности работы и необходимости иметь твердую руку. Если подобные действия будут осуществляться впервые (а так, вероятнее всего, и будет), то можно только посоветовать морально подготовиться к тому, что будут поломаны сверла. После выполнения всего спектра работ, чтобы убедится в их качестве, посмотрите на просвет. Если будут заметны определённые дефекты, их необходимо оперативно устранить.

Наносим топографический рисунок

Места, где будут проходить токопроводящие дорожки, нужно защитить от разрушения во время травления. Для этого их покрывают специальной маской. Перед нанесением необходимо удалить все сторонние субстанции. В особенности это относится к клею, который случайно мог вытечь на поверхность.

После того как дорожки размечены, мы можем приступать к процессу нанесения рисунка. Для этой цели подойдёт водостойкая эмаль (любая).

Переносим рисунок с бумаги на стеклотекстолит

Это самый ответственный этап. Необходимо бумагу (той стороной, где рисунок) приложить к стеклотекстолиту и прижать с большим усилием. Затем разогреваем полученный «бутерброд» в духовой печи до температуры в 200 градусов. Ждём, пока плата охладится до комнатного значения. После этого остаётся отодрать бумагу — и рисунок останется на печатной плате. Это может показаться довольно сложным, особенно с температурой. Специально для таких сомневающихся людей некоторые умельцы предлагают использовать электроутюг. Но здесь следует сделать одно важное предупреждение: результат получается нестабильный. Конечно, можно попробовать попрактиковаться день-второй, и, возможно, будет не хуже, чем в случае с печью. Но всё же существует проблема сложности обеспечения одновременного нагрева поверхности по всей печатной плате до одной температуры. Поэтому рисунок таким способом переносится не полностью.

Наиболее значительные проблемы доставляют пробелы, которые возникают при таком создании. Для безопасности во время «приготовления» печатной платы в духовке её можно дополнительно с разных сторон укрыть листами из металла толщиной в пять-шесть миллиметров. Это делается во избежание негативной деформации во время термической обработки платы.

Заключение

Вот, в общем-то, плата для AVR и готова. Конечно, здесь описан универсальный способ, и доделывать под конкретные условия каждому придётся самостоятельно, ориентируясь по своим потребностям. Можно и поэкспериментировать с созданием универсальных плат. Каждый умелец их постоянно в чем-то дорабатывает, чтобы они были лучше и качественнее. К тому же их освоение позволяет обеспечить надёжность создаваемых схем.

1. Введение

Прочитав много постов и комментариев из DIY, мне показалось что тут много народа, кто интересуется микроконтроллерами и их программированием. Еще больше людей, которые хотели бы начать, но не знают с чего. Я считаю что нужно начинать с практики, потому рассматривать эмуляторы я не буду. Для начала нужен программатор, но информации об этом в интернете тонны, потому остановлюсь лишь поверхностно. Самый простой из них — это так называемые «5 проводов», сделать его легко — берем LPT кабель и через резисторы соединяем с МК, как показанно на рисунке:a5c9f888fa076d0ae9f666bc4c84c7f8.png Делать все нужно предельно аккуратно, спалить LPT таким — на раз. Гораздо лучше сделать что то приличнее — например USBasp он безопаснее, и работает через USB. Как вариант — купить программатор в том же Voltmaster или Чип-и-Дип. Параметры для начала не так важны, кроме цены и поддерживаемых микросхем. По сути все. Кристалл + программатор + желание и стремление, этого достаточно для того чтобы заняться программированием МК. Но еще очень большую роль играет организация самой схемы и периферии (обвязки) МК. Можно конечно изготавливать печатную плату для каждого случая, когда хочется поиграться, но я за более универсальные и быстрые решения. Конечно есть макетные платы, но по мне так паутина из проводов и перемычек выглядит ужасно, да и ненадежно и, что самое главное не наглядно (а при разработке и обучении это важно). Существуют отладочные платы для различных микроконтроллеров. И все в них хорошо, кроме цены (самая простенькая от 2-3 тыс.р — оно конечно того стоит, но на то оно и радиолюбительство, чтобы по возможности обойтись своими руками). Потому я принял решение создать свою простую отладочную плату, которая будет отвечать моим требованиям. Какие требования были к данной плате:

  • Простота исполнения
  • Наглядность
  • Универсальность
  • Дешевизна
  • Простота создания тестового устройства
  • Наличие LCD дисплея
  • Встроенная клавиатура
  • 2 свободных порта (с возможностью их использовать по своему усмотрению)
  • COM порт у платы для интеграции с компьютером

Что было использованно при изготовлении:

  1. Стеклотекстолит односторонний ~70р
  2. Колодки для подключения периферии и коммутации (штырьки как на материнках, на которые вешаются джамперы) ~50р
  3. Кнопки тактовые — ~ 50р
  4. Панелька для микросхемы 30р
  5. Разьем для COM порта 20р
  6. Микросхема MAX232a 50р
  7. LCD индикатор — от 250р
  8. Сама микросхема ATmega32 от 200р

итого 720р по московским безумным ценам на радиодетали (А точнее по прайсу Вольтмастера). вот что в итоге у меня получилось:

2. Разводка

Теперь по порядку. Начнем с разводки платы в Sprint-Layout. По сути, это самый ответственный момент в создании устройства, нужно учесть все ньюансы, а также на этом моменте нужно понять — что конкретно требуется от платы, как это должно выглядеть, как удобнее. Потому не советую повторять в слепую, стоит сесть и просмотреть аналоги, вычленить для себя интересные решения или узлы. У меня получилось вот так: подробнее о периферии, для этого стоит взглянуть на распиновку кристалла:3ffe3c7444480139f45000f88342d307.jpg

  • На PORTA будет висеть клавиатура — 7 кнопок, расположенных так, чтобы с помощью них можно было при надобности осуществить навигацию, например, по меню (крестовина), и пара кнопок для доп ф-й.
  • на PORTB я разместил LCD дисплей, таким образом, как это предусмотренно в codevision avr стандартными средствами (используются три командных регистра дисплея и 4 регистра данных)
  • PORTC и PORTD вывел колодками для подключения периферии. еще я предусмотрел рядом с колодками еще цанговые панельки, но в моем хозяйстве их неоказалось и их установка отложена до лучших времен
  • Также я разместил max232 c обвязкой из конденсаторов и разъем COM порта.подробнее о подключении max232
  • Для универсальности каждый пин контроллера выведен на колодки, параллельные панельке для микросхемы.
  • пины программирования SCK, MISO, MOSI и RESET продублированны еще одним рядом колодок
3. Изготовление печатки

Как только плата была разведена, методом лазерного утюга была изготовленна печатка. на методе останавливаться нет смысла, так как он сотни раз описан в интернете, и как минимум подробнейшее описание есть на Хабре. Результат:

4. Завершающий этап

далее сверлим, лудим, паяем нашу плату.

5. Заключение

И вот, наша отладочная плата для упрощения разработки на МК готова. Теперь для того, чтобы научиться работать с функционалом МК AVR нам не придется ваять клубок проводов. просто подключаем к свободным портам нужную периферию (будь то светодиоды, датчики, драйверы приводов и сервомашинок, а так же многое другое), и спокойно пишем программу. В заключение хочу сказать, что вид и функциональность данной платы формировались на субьективных требованиях и желаниях, и каждый желающий сделать такое устройство должен сам сесть и обдумать постановку задачи и требования. На все работы ушел один вечер. Статья написана nortonix.Используемые источники:

  • http://www.getchip.net/posts/064-universalnaya-otladochnaya-plata-demo-plata-ot-ua9-ota/
  • https://fb.ru/article/339039/plata-otladochnaya-dlya-mikrokontrollerov-avr-osobennosti-shema-otladochnaya-plata-svoimi-rukami
  • https://habr.com/post/93099/

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации