Шаг 1: Моя цель
«Создать дешевый и эффективный контроллер заряда солнечной батареи»
Шаг 2: Схема
Для сборки контроллера заряда аккумулятора от солнечной батареи своими руками понадобятся:
- Интегральная схема NE555 IC с сокетом IC
- Один транзистор 2N2222 или PN222a
- Три резистора на 1K Ом
- Один резистор на 330 Ом и один на 100 Ом
- Два резистора на 330 Ом 1/5 w (опционально)
- Два потенциометра на 10K
- Два светодиода (зеленый и красный)
- Диод 1N4007
- Реле 5V SPDT
- Два трехпиновых коннектора для макетной платы
- Провода
- Макетная плата
- LM7805 (тип TO-220)
- Два конденсатора(я использую на .1uF, можете использовать любой)
- МОП-транзисторами IRF 540 (MOSFET)
На рисунке вы увидите завершенную схему контроллера . 5V реле — главный компонент схемы, это Ключ (SPDT, Single Pole Double Throw). У него одна обычная клемма и два контакта разных конфигураций. Один — обычно открыт (NO), второй — обычно закрыт (NC).
В нашем случае мы подключаем плюс солнечной панели на полюс реле (обычную клемму) и плюс батарейки на обычно открытый контакт; когда батарейка подключена к контроллеру солнечной зарядки, схема проверяет вольтаж батарейки. Если вольтаж меньше или равен обычному, то ток начинает поступать на батарейку, и она заряжается. Когда вольтаж батарейки начинает превышать верхний предел, реле активируется и ток перенаправляется в обычно закрытый контакт.
Шаг 3: Калибровка
После завершения схемы, нужно настроить нижний и верхний пороги. Калибровка батарейки нужна, чтобы предотвратить чрезмерную разрядку или зарядку. Я использую 12V в качестве нижнего предела и 14.9V в качестве верхнего. Это означает, что когда заряд батареи понижается до 12V, начинается зарядка и когда вольтаж поднимается до 14.9V, реле активируется, и схема перестает заряжать батарейку.
Чтобы настроить лимиты, вам понадобится мультиметр и два источника питания на 12V и 15V, или один универсальный. Сначала нужно установить нижний порог. Для этого установите вольтаж на 12V и подключите его к схеме. Соедините землю с мультиметром и замерьте показатель на пине 2 схемы 555. Настройте вольтаж так, чтобы получить 1.66V. Затем переключите вольтаж на 14.9V и возьмите замер на пине 6 схемы 555. Настройте вольтаж на 3.33V. Теперь контроллер готов к работе.
Шаг 4: Соединение
Приложенная картинка показывает электрическую схему устройства. Сначала соедините плюс от солнечной панели к центральному полюсу реле, затем соедините красный провод от батарейки с NO на реле. Соедините минус от солнечной панели с минусом на схеме, а затем присоедините минус батарейки к схеме.
Шаг 5: Работа
Когда вольтаж батарейки меньше, чем 14.9V, она начинает заряжаться путём передачи тока через NO на реле. Когда вольтаж батарейки достигает 14.9 вольт, реле автоматически переключается на NC.
Шаг 6: Момент истины
Механическая конструкция ветрогенератора в чистом её виде представляет собой только часть полноценной ветряной энергетической установки. Полностью пригодная к эксплуатации система, помимо механической конструкции, имеет ещё ряд электронных узлов.
Так, например, обязательно необходим контроллер для ветрогенератора – устройство, функционально предназначенное для стабилизации параметров заряда АКБ в процессе работы ветряка.
Разберемся, какие функции выполняет прибор и приведем схемы сборки контроллера своими руками. Кроме того, обозначим особенности работы и целесообразность покупки китайского электронного агрегата для ветряка.
Ветрогенераторы и контроллеры заряда АКБ
Если механический ветряк вполне возможно сделать самостоятельно, можно ли сделать своими руками ещё и контроллер ветряка?
Чтобы иметь какое-то представление о контроллерах ветрогенераторов и успешно воспроизводить такую технику своими руками, не лишними будут базовые сведения об этих приборах.
Контроллер заряда аккумуляторной батареи для ветрогенератора небольшой мощности. Контроль некоторых параметров системы осуществляется через встроенный в конструкцию жк-дисплей
Контроллер, обслуживающий аккумуляторные батареи, призван в первую очередь управлять процессом заряда АКБ. Это его основная функция, но ее условно следует разделить ещё на целый ряд подфункций.
Например, одним функционалом отслеживается ток заряда и ток саморазряда. Другой функционал реализует действия, направленные на измерение температуры и давления. Третий отвечает за компенсацию разницы энергетических потоков, когда одновременно с потреблением тока нагрузкой осуществляется заряд АКБ.
Приборы промышленного изготовления наделены полноценным функционалом. А вот относительно любительских конструкций такого не скажешь. Устройства, выполненные на базе простейших схемных решений в домашних условиях своими руками – это контроллеры, далёкие от совершенных моделей.
Тем не менее, они работают и достаточно продуктивно позволяют эксплуатировать разные виды ветрогенераторов. Как правило, в самодельных конструкциях реализована лишь одна функция – защита от перенапряжения и от глубокой разрядки.
Одна из многочисленных вариаций контроллеров для ветряков, изготовленных своими руками. Такие конструкции отличаются незамысловатыми техническими решениями и простейшим исполнением монтажа
Почему внедрение контроллера в систему ветряка является обязательным моментом?
Потому что в режиме энергетической подпитки АКБ без применения контроллера следует ожидать неприятных последствий:
- Деградацию структуры аккумулятора по причине неконтролируемых химических процессов.
- Неконтролируемый рост давления и температуры электролита.
- Утрату аккумулятором свойств подзарядки в связи с имеющим место долговременным разрядом.
Контроллер заряда для схемы ветрогенераторной установки выполняется, как правило, в виде отдельного электронного модуля. Этот модуль съёмный и быстро отключаемый. Приборы промышленного изготовления обязательно оснащаются индикацией режимов и состояний – световой или визуально передаваемой через дисплей.
На практике могут применяться два вида устройств – встраиваемые непосредственно в корпус ветрогенератора и подключаемые к аккумуляторной батарее.
Схемные решения для сборки своими руками
За всё время с момента появления первых самодельных ветряков количество схемных решений контроллеров выросло многократно. Многие из схемных разработок далеко не совершенны, но есть и такие варианты, на которые следует обратить внимание.
Для бытового применения, конечно же, актуальными являются простые схемы, требующие небольших финансовых вложений, эффективные и надёжные.
Отталкиваясь от этих требований, начать можно с контроллера для ветрогенератора, созданного на базе реле-регуляторов автомобилей. В схеме применимы как реле с минусовым управляющим контактом, так и реле с плюсовым управляющим контактом.
Этот вариант привлекает малым количеством деталей и простейшим монтажом. Потребуется всего одно реле, один силовой транзистор (полевой), один резистор.
Схема контроллера, вычерченная неким электронщиком своими руками. Здесь всё просто и понятно без лишних слов. Собственно, как и в самой технологичности решения. Минимум деталей – максимум сбережений (+)
Схема носит название «балластная», так как в ней используется дополнительная нагрузка в виде обычной лампочки накаливания. Таким образом, список деталей пополнится ещё одним элементом – лампой.
Используется автомобильная лампа (или несколько ламп) на 12 вольт в зависимости от мощности системы. Также вместо этого элемента допустимо применять нагрузочное сопротивление иного типа: мощный резистор, электронагреватель, вентилятор и т.п.
Работа «балластной» схемы с минусом
Действие автомобильного реле-регулятора напрямую связано с уровнем заряда аккумуляторной батареи. Если напряжение на клеммах АКБ поднимается выше 14.2 вольт, реле срабатывает и размыкает минусовую цепь силового транзистора.
В свою очередь на транзисторе открывается переход, подключающий лампу прямого накала к аккумулятору. В итоге зарядный ток сбрасывается через нить лампы накаливания. При понижении напряжения на клеммах АКБ – обратный процесс. Так осуществляется поддержка стабильного уровня напряжения батареи.
Как действует «балластная» схема с плюсом
Слегка модернизированным вариантом «балластного» контроллера заряда для ветряка является вторая схема на реле-регуляторе с плюсовым управляющим контактом. Например, подойдут реле от автомобилей марки «ВАЗ».
Отличие от предыдущей схемы – применение твердотельного реле, например, GTH6048ZA2 на ток 60A вместо транзистора. Преимущества очевидны: схема выглядит ещё проще и при этом обладает большей надёжностью и эффективностью.
Ещё одно простейшее схемотехническое решение под сборку контроллера заряда АКБ ветрогенератора. Эффективность и надёжность схемы повышается за счёт применения в ней твердотельного реле (+)
Особенность этого простого решения – прямое подключение на клеммы аккумулятора генератора ветряка. Проводники контроллера заряда тоже «посажены» непосредственно на контакты аккумулятора.
По факту обе этих части схемы никак не связаны между собой. Напряжение с ветрогенератора подаётся на батарею постоянно. Когда напряжение на клеммах АКБ достигает значения 14.2 Вт, твердотельное реле подключает нагрузку для сброса. Так аккумулятор защищается устройством от перезаряда.
Здесь балластной нагрузкой может выступать не только лампа накаливания. Вполне реально подключить любое иное устройство, рассчитанное на ток до 60 А. Например, электрический трубчатый нагреватель.
Что ещё важно в этой схеме – действие твердотельного реле характеризуется плавно нарастающей амплитудой. По сути, налицо эффект профессионально изготовленного ШИМ-контроллера.
Усложнённый вариант схемы контроллера
Если предыдущий вариант схемного решения контроллера заряда АКБ только лишь напоминает устройство ШИМ (широтно-импульсная модуляция), здесь данный принцип реализуется конкретно.
Эта схема контроллера для ветряка с трёхфазным генератором отличается некоторыми сложностями, так как предполагает использование микросхем – в частности, операционных усилителей на полевых транзисторах в составе сборки TL084.
Однако на монтажной плате всё выглядит не так сложно, как на бумажном листе.
Схемное решение для сборки контроллера своими руками, где используется микросборка TL084. Принцип работы также выстроен с применением реле для переключения режимов, но есть возможность регулировать точки отсечки (+)
Так же, как и в предыдущих решениях, используется реле в качестве коммутационного элемента для балластной нагрузки. Реле рассчитано на работу с 12-вольтовым аккумулятором, но при желании можно подобрать модель на 24 Вт.
Балластный резистор сделан в виде мощного сопротивления (намотка на керамике нихром). Для регулировки рабочего диапазона напряжений (11.5-18 Вт) в схеме используются переменные резисторы, включенные в цепь управления микроэлектронной сборки TL084.
Работает такой контроллер заряда аккумулятора ветряка следующим образом. Трёхфазный ток, полученный от ветрогенератора, выпрямляется силовыми диодами.
На выходе диодного моста образуется постоянное напряжение, которое подаётся на вход схемы через контакты реле, дополнительный диод, аккумулятор и дальше на внутрисхемный стабилизатор (78L08) и на вход сборки TL084.
Момент переключения триггера в одно из состояний определяется значениями переменных резисторов (Low V и High V) нижнего и верхнего порога напряжений.
Пока на клеммах аккумуляторной батареи присутствует напряжение, не превышающее 14.2 вольта (удовлетворяющее значению настройки R High V), выполняется заряд. Как только значения изменяются в сторону увеличения, операционный усилитель TL084 подаёт сигнал на базу транзистора, которым управляется реле.
Реализованный своими руками продукт по схеме с микросборкой TL084. Всё предельно просто, даже вместо качественной печатной платы выбрана плата под навесной монтаж. Такими моментами всегда радуют самодельные конструкции
Происходит срабатывание реле, цепь питания схемы разрывается и замыкается на балластный резистор. Сброс по балласту проходит до момента разряда аккумулятора, близкого к значению настройки переменного резистора Low V.
Как только это значение достигнуто, вторым операционным усилителем TL084 схема переключается в обратное состояние. Так осуществляется работа контроллера.
Китайская электронная альтернатива
Изготовление контроллера ветрогенератора своими руками – дело престижное. Но учитывая скорость развития электронных технологий, нередко смысл самостоятельной сборки теряет свою актуальность. К тому же большая часть предлагаемых схем уже морально устарела.
Получается дешевле купить уже готовый продукт, сделанный профессионально, с высоким качеством монтажа, на современных электронных компонентах. Например, приобрести подходящее устройство по разумной стоимости можно на Aliexpress.
Ассортимент предложений на китайском сайте впечатляет. Контроллеры для ветрогенераторов под различный уровень мощности продаются по цене от 1000 руб. Если отталкиваться от этой суммы, в плане сборки аппарата своими руками игра явно не стоит свеч.
Так, например, среди предложений китайского портала есть модель для 600-ваттного ветряка. Устройство стоимостью 1070 руб. пригодно для работы с аккумуляторами 12/24 вольта, в режиме рабочего тока до 30 А.
Вполне приличный, рассчитанный на 600-ваттный ветрогенератор, контроллер заряда в китайском исполнении. Такое устройство можно заказать из Китая и получить через почту примерно за месяц-полтора
Качественный всепогодный корпус контроллера размерами 100х90 мм оснащён мощным радиатором охлаждения. Исполнение корпуса соответствует классу защиты IP67. Диапазон внешних температур от – 35 до +75ºС. На корпусе выведена световая индикация режимов состояния ветрогенератора.
Спрашивается, какой резон тратить время и силы на сборку простенькой конструкции своими руками, если есть реальная возможность купить нечто подобное и технически серьёзное?
Ну а если этой модели недостаточно, у китайцев имеются варианты совсем «крутые». Так, среди новых поступлений отметилась модель мощностью 2 кВт под рабочее напряжение 96 вольт.
Китайский продукт из списка нового прихода. Обеспечивает контроль заряда батарей, работая в паре с ветрогенератором мощностью 2 кВт. Принимает на входе напряжение до 96 вольт
Правда, стоимость этого контроллера уже в пять раз дороже предыдущей разработки. Но опять же, если соизмерять затраты на производство нечто подобного своими руками, покупка выглядит рациональным решением.
Единственное что смущает в китайских продуктах – они имеют свойство неожиданно прекращать работу в самых неподходящих случаях. Поэтому купленное устройство часто приходится доводить до ума – естественно, своими руками. Но это значительно легче и проще, чем делать контроллер заряда ветрогенератора своими руками с нуля.
Для любителей самоделок на нашем сайте есть серия статей, посвященная изготовлению ветрогенераторов:
Выводы и полезное видео по теме
Желание сделать оборудование для домашнего применения своими руками иногда сильнее более простого решения – покупки недорогого устройства. Что из этого получилось, смотрите в видеоролике:
Оценивая перспективы изготовления электроники собственными силами независимо от её назначения, приходится столкнуться с мыслью, что век «самоделкиных» завершается.
Рынок перенасыщен готовыми электронными устройствами и модульными комплектующими практически под каждый бытовой продукт. Электронщикам-любителям теперь остаётся единственное дело – заниматься сборкой домашних конструкторов.
Есть, что дополнить, или возникли вопросы по теме сборки и использования контроллеров для ветрогенератора? Можете оставлять комментарии, задавать вопросы и добавлять фотографии своих самоделок – форма для связи находится в нижнем блоке.
Контролер заряда – это электронное техническое устройство предназначенное для управления работой гелио установки в заданном режиме.
Данный процесс выражается в контролировании режима заряд-разряд аккумуляторной батареи, а также управлении работой солнечных батарей и подключения нагрузки в соответствии с оптимальными параметрами использования накопленной энергии.
Контроллер заряда солнечной батареи своими руками
В специализированных компаниях, а также торговых сетях занимающихся электронным оборудованием можно приобрести контроллеры заряда, выпускаемые различными компаниями производителями, как отечественными, так и зарубежными.
Подобное оборудование стоит достаточно дорого, поэтому для снижения стоимости гелио установки и сокращения сроков ее окупаемости, подобное устройство можно собрать своими руками.
В этом случае, конечно же, необходимо уметь пользоваться паяльником и иметь хотя бы начальные знания касающиеся электронных устройств и способах их монтажа.
О том, как сделать контроллер заряда для солнечной батареи своими руками мы расскажем в настоящей статье нашего проекта.
Схема контроллера заряда
Существует множество схем подобного оборудования, различающихся по степени сложности изготовления и техническим возможностям готового изделия после его сборки.
Конкретную схему каждый пользователь выбирает для себя сам, ориентируясь на свой опыт работы с электронными изделиями и умением их собирать самостоятельно.
На ниже следующем рисунке приведена схема контроллера, о сборке которого будет рассказано далее.
Комплектующие для самодельного контроллера управления работой солнечной батареи
Для сборки контроллера по выше приведенной схеме потребуются следующие комплектующие, а именно:
- Микросхемы — LM385-2.5 (2 шт.);
- Конденсаторы – емкостью 100 пф (2 штуки) и 1000 пф (1 штука);
- Диоды — SB540 (1 штука) или аналогичный с рабочим током равным максимальному току, вырабатываемому солнечной батареей, а также диод Шотки;
- Транзисторы — BUZ11, BC548, BC556;
- Резисторы — R1 – 1k5, R2 – 100k, R3 – 68k, R4 и R5 – 10k, R6 – 220k, R7 – 100k, R8 – 92k, R9 – 10k, R10 – 92k.
- Светодиодный индикатор – 1 штука.
Важно! Данная схема рассчитана на работу с одной солнечной батареей, способной вырабатывать максимальный ток 4,0 Ампера и аккумулятором, емкость которого составляет 3000 А/час.
При необходимости комплектующие можно заменить, а также усовершенствовать данную схему, если появиться такая необходимость.
Вот некоторые советы по замене комплектующих:
- Если заменить микросхемы, то следует менять и конденсатор С2 (его емкость должна соответствовать новым характеристикам микросхем).
- При невозможности приобрести резисторы сопротивлением 92К (R8 и R10 на схеме), их следует заменить на два подключаемых последовательно, сопротивлениями 82 и 10 К.
К сведению! При использовании солнечных панелей, максимальный ток которых более 4,0 А, необходимо использовать более мощные транзисторы и диоды, чем указанных в рассматриваемой схеме.
Принцип работы собираемой схемы
В темное время суток, когда солнечная батарея не вырабатывает электрический ток, контроллер находиться в режиме ожидания (спящий режим).
При попадании солнечных лучей на фотоэлектрические элементы гелио установки, начинается вырабатываться электрический ток, и при достижении напряжения, равного 10,0 В контроллер включается в работу (электрический ток подается на клеммы аккумулятора).
Когда напряжение станет равным 14,0 В, включается в работу усилитель U1 и зарядка прекращается (в это время разряжается конденсатор С2).
После разрядки конденсатора напряжение падает и закрывается мощный транзистор (VT3 на схеме) и зарядка АКБ возобновляется.
Сборка контроллера заряда аккумулятора
Для того, чтобы было удобно использовать собираемую конструкцию, необходимо подобрать корпус, в котором будет размещена плата с установленными на нее электронными составляющими и изготовить саму эту плату.
В магазинах группы «Сделай САМ» можно приобрести специальные заготовки для изготовления печатных плат, представляющие собой диэлектрик (стеклотекстолит) в виде пластины, на который нанесен слой меди или иного токопроводящего материала.
Изготовление печатной платы осуществляется в следующей последовательности:
- На бумаге рисуется шаблон, соответствующий схеме, предполагаемой к размещению на печатной плате. На шаблоне прорисовываются дорожки между элементами схемы, а также места установки этих элементов.
- Подбирается заготовка печатной платы нужного размера (если необходимо, то излишки обрезаются при помощи ножовки по металлу).
- Шаблон приклеивается при помощи клея «Момент» на подготовленную заготовку.
- В местах крепления элементов схемы просверливаются отверстия (сверло диаметром 0,7 – 0,8 мм).
- Шаблон удаляется, а на заготовке платы, между просверленными отверстиями, прорисовываются дорожки связи (для этого используется краска стойкая к водным растворам).
- Когда дорожки и места пайки электронных составляющих прорисованы, можно приступать к травлению платы.
Важно! Перед нанесением краски на поверхность печатной платы ее следует обезжирить при помощи бензина, ацетона или простого моющего средства.
К сведению! Травление, в домашних условиях, можно выполнить с помощью перекиси водорода или раствором хлорного железа.
Травление осуществляется следующим образом, а именно:
- В специальную емкость, стойкую к воздействиям химических веществ (стекло, эмалированная посуда и т.д.) наливается подготовленный раствор;
- Затем в раствор погружается печатная плата с нанесенным на него рисунком.
- Когда токопроводящий слой, в местах, где отсутствует краска, раствориться, плата достается из раствора, после чего обливается проточной водой;
- После этого заготовка вытирается насухо и с ее поверхности удаляется краска, обозначающая электрические дорожки (используется наждачная бумага).
Когда краска будет удалена, печатная плата готова к размещению электронных элементов схемы.
В соответствии с выбранной схемой и шаблоном размещения комплектующих, выполняется впаивание элементов конструкции, в местах где просверлены монтажные отверстия.
Готовая плата помещается в подготовленный корпус, на котором монтируются места вывода контактов к источнику электрического тока (солнечная батарея) и накопительному элементу гелио системы (аккумуляторная батарея).
Проверятся работоспособность собранной схемы, и выполняется установка собранного контроллера в выбранном месте размещения.
Отличительные особенности МРРТ и ШИМ контроллеров и как это отражается при изготовлении их своими руками
Отличительной особенностью МРРТ моделей, является высокий КПД. Работа подобных приборов основана на поиске максимальной точки мощности, определяемой на соотношении силы тока и напряжения на источнике электрической энергии (солнечная батарея).
ШИМ устройства – это более дешевые приборы, работающие по принципу широтно-импульсной модуляции.
При изготовлении подобных устройств своими руками наиболее просто изготовить ШИМ-прибор, но для использования в автоматическом режиме все-таки лучше МРРТ аналоги, об одном из которых было рассказано выше.
Достоинствами подобных устройств являются:
- Универсальность использования (гелио и комбинированные системы, ветровые генераторы).
- Возможность создания оптимальных условий для заряда АКБ, даже при низкой освещенности, что увеличивает срок их эксплуатации;
- Высокий КПД использования.
Недостатки тоже есть, их можно сформулировать следующим образом:
- Высокая стоимость у готовых изделий;
- Сложность при изготовлении своими руками, обусловленная технологией обеспечивающей работу устройства.
В заключение хочется отметить, что даже сложные приборы можно изготовить самостоятельно в домашних условиях, используя электронные комплектующие заводского производства, а главными условиями успеха в этом деле, будет желание и умение работать своими руками.
Используемые источники:
- https://masterclub.online/topic/13980-kontroller-zaryada-akkumulyatora-solnechnoi-batarei
- https://sovet-ingenera.com/eco-energy/generators/kontroller-dlya-vetrogeneratora.html
- https://alter220.ru/solnce/kak-sdelat-kontroller-zaryada-akkumulyatora-svoimi-rukami.html