Андрей Смирнов
Время чтения: ~12 мин.
Просмотров: 5

Преобразователь напряжения на MC34063

Для питания портативной электронной аппаратуры в домашних условиях зачастую используют сетевые источники питания. Но это не всегда бывает удобно, поскольку не всегда по месту использования имеется свободная электрическая розетка. А если необходимо иметь несколько различных источников питания?

Одно из верных решений это изготовить универсальный источник питания. А в качестве внешнего источника питания применить, в частности, USB-порт персонального компьютера. Не секрет, что в типовом USB-разъеме предусмотрено питание для внешних электронных устройств напряжением 5В и токе нагрузки не более 500 мА.

Но, к сожалению, для нормальной работы большинства переносной электронной аппаратуры необходимо 9 или 12В. Решить поставленную задачу поможет специализированная микросхема преобразователь напряжения на MC34063, которая значительно облегчит изготовление лабораторного блока питания с требуемыми параметрами.

Структурная схема преобразователя mc34063:

Предельные параметры работы MC34063

Описание схемы преобразователя

Ниже представлена принципиальная схема варианта источника питания, позволяющего получить 9В или 12В из 5В USB-порта компьютера.

За основу схемы взята специализированная микросхема MC34063 (ее российский аналог К1156ЕУ5). Преобразователь напряжения   MC34063 представляет собой электронную схему управления DC / DC — преобразователем.

Она имеет температурно-компенсированный источник опорного напряжения (ИОН), генератор с изменяемым рабочим циклом, компаратор, схему ограничения по току, выходной каскад и сильноточный ключ. Эта микросхема специально изготовлена для использования в повышающих, понижающих и инвертирующих электронных преобразователях с наименьшим числом элементов.

Выходное напряжение, получаемое в результате работы, устанавливается двумя резисторами R2 и R3. Выбор номинала резисторов производится из расчета, что на входе компаратора (вывод 5) должно быть напряжение равное 1,25 В. Вычислить сопротивление резисторов для схемы  можно используя несложную формулу:

Uвых= 1,25(1+R3/R2)

Зная необходимое выходное напряжение и сопротивление резистора R3, можно довольно легко определить сопротивление резистора R2.

Так как выходное напряжение определяется резисторным делителем, можно значительно улучшить схему, включив в схему переключатель, позволяющий получать всевозможные значения по мере необходимости. Ниже приведен вариант преобразователя MC34063 на два выходных напряжения (9 и 12 В)

Детали преобразователя MC34063

Резисторы, используемые  в преобразователе, — любые, мощностью от 0,125 Вт до 0,5 Вт, типа МЛТ или С2-29, неполярные конденсаторы — типа КД, КМ, К10-17 и т.п. Электролитические конденсаторы — типа К50-29, К50-35 или подобные. Индуктивность дросселя L1 – от 120 до 180 мкГн, мощностью не менее 200 мВт. В качестве дросселя L2 использована интегральная индуктивность типа ЕС24 или аналогичная. Индуктивность этого дросселя должна быть в районе от 10 до ЗЗ мкГн.

Скачать калькулятор для mc34063(994,1 KiB, скачано: 9 959)

Скачать datasheet mc34063(1,1 MiB, скачано: 4 139)

Основные технические характеристики MC34063

  • Широкий диапазон значений входных напряжений: от 3 В до 40 В;
  • Высокий выходной импульсный ток: до 1,5 А;
  • Регулируемое выходное напряжение;
  • Частота преобразователя до 100 кГц;
  • Точность внутреннего источника опорного напряжения: 2%;
  • Ограничение тока короткого замыкания;
  • Низкое потребление в спящем режиме.
  1. Источник опорного напряжения 1,25 В;
  2. Компаратор, сравнивающий опорное напряжение и входной сигнал с входа 5;
  3. Генератор импульсов сбрасывающий RS-триггер;
  4. Элемент И объединяющий сигналы с компаратора и генератора;
  5. RS-триггер устраняющий высокочастотные переключения выходных транзисторов;
  6. Транзистор драйвера VT2, в схеме эмиттерного повторителя, для усиления тока;
  7. Выходной транзистор VT1, обеспечивает ток до 1,5А.

mc34063-struct.png

Генератор импульсов постоянно сбрасывает RS-триггер, если напряжение на входе микросхемы 5 – низкое, то компаратор выдает сигнал на вход S сигнал устанавливающий триггер и соответственно включающий транзисторы VT2 и VT1. Чем быстрее придет сигнал на вход S тем больше времени транзистор будет находиться в открытом состоянии и тем больше энергии будет передано со входа на выход микросхемы. А если напряжение на входе 5 поднять выше 1,25 В, то триггер вообще не будет устанавливаться. И энергия не будет передаваться на выход микросхемы.

Производители этой микросхемы (например Texas Instruments) в своих datasheets пишут, что её работа основана на широтно-импульсной модуляции (PWM). Даже если и можно назвать то, что делает MC34063 ШИМом, то очень уж примитивным.

  • Самый главный недостаток MC34063 – отсутствие встроенного усилителя ошибки. Поэтому пульсации выходного напряжения получаются достаточно большими. И не просто так в рекомендациях по применению предлагается на выход преобразователя устанавливать дополнительный LC-фильтр.
  • Второй недостаток – не простое подключение внешнего МДП транзистора.

Мое же мнение, что если требуется низкий уровень пульсаций, либо большая мощность преобразователя, то лучше использовать другие микросхемы – с внутренним усилителем ошибки и с драйвером работающим с полевыми транзисторами.

MC34063 для нетребовательных к пульсациям и мощности применений!

MC34063 повышающий преобразователь

mc34063-step-up.png

  • C1 – 100 мкФ 25 В;
  • C2 – 1500 пФ;
  • C3 – 330 мкФ 50 В;
  • DA1 – MC34063A;
  • L1 – 180 мкГн;
  • R1 – 0,22 Ом;
  • R2 – 180 Ом;
  • R3 – 2,2 кОм;
  • R4 – 47 кОм;
  • VD1 – 1N5819.

В данной схеме ограничение входного тока задается резистором R1, выходное напряжение определяется соотношением резистором R4 и R3.

Понижающий преобразователь на МС34063

mc34063-step-down.png

  • C1 – 100 мкФ 50 В;
  • C2 – 1500 пФ;
  • C3 – 470 мкФ 10 В;
  • DA1 – MC34063A;
  • L1 – 220 мкГн;
  • R1 – 0,33 Ом;
  • R2 – 1,3 кОм;
  • R3 – 3,9 кОм;
  • VD1 – 1N5819.

Данный преобразователь можно использовать для питания USB устройств. Кстати можно повысить ток отдаваемый в нагрузку, для этого потребуется увеличить емкости конденсаторов C1 и C3, уменьшить индуктивность L1 и сопротивление R1.

МС34063 схема инвертирующего преобразователя

  • C1 – 100 мкФ 10 В;
  • C2 – 1500 пФ;
  • C3 – 1000 мкФ 16 В;
  • DA1 – MC34063A;
  • L1 – 88 мкГн;
  • R1 – 0,24 Ом;
  • R2 – 8,2 кОм;
  • R3 – 953 Ом;
  • VD1 – 1N5819.

Обратите внимание, что в данной схеме сумма входного и выходного напряжения не должна превышать 40 В.

Аналоги микросхемы MC34063

Если MC34063 предназначена для коммерческого применении и имеет диапазон рабочих температур 0 .. 70°C, то её полный аналог MC33063 может работать в коммерческом диапазоне -40 .. 85°C. Несколько производителей выпускают MC34063, другие производители микросхем выпускают полные аналоги: AP34063, KS34063. Даже отечественная промышленность выпускала полный аналог К1156ЕУ5, и хотя эту микросхему купить сейчас большая проблема, но вот можно найти много схем методик расчетов именно на К1156ЕУ5, которые применимы к MC34063.

Если необходимо разработать новое устройство и какжется MC34063 подходит как нельзя лучше, то соит обратить внимание на более современные аналоги, например: NCP3063.

100pcs-New-MC34063-MC34063A-34063-SOP-8-Switching-Regulator-IC.jpg

  • Цена: $3.70 (цена за 100шт)

Некоторое время назад я уже публиковал обзор, где показал как при помощи КРЕН5 сделать ШИМ стабилизатор. Тогда же я упомянул о одном из самых распространенных и наверное самых дешевых контроллеров DC-DC преобразователей. Микросхеме МС34063. Сегодня я попробую дополнить предыдущий обзор. Вообще, данную микросхему можно считать устаревшей, но тем не менее она пользуется заслуженной популярностью. В основном из-за низкой цены. Я их до сих пор иногда использую в своих всяких поделках. Собственно потому я и решил прикупить себе сотню таких микрух. Обошлись они мне в 4 доллара, сейчас у того же продавца они стоят 3.7 доллара за сотню, это всего 3.7 цента за штуку. Найти можно и дешевле, но я заказывал их в комплект к другим деталям (обзоры зарядного для литиевого аккумулятора и стабилизатор тока для фонарика). Есть еще четвертый компонент, который я заказал там же, но о нем в другой раз. Ну я наверное уже утомил длинным вступлением, потому перейду к обзору. Предупрежу сразу, будет много всяких фото. Пришло это все в пакетиках, замотанное в ленту из пупырки. Такая себе кучка 🙂27ae25.jpg Сами микросхемы аккуратно запакованы в пакетик с защелкой, на него наклеена бумажка с наименованием. Написано от руки, но проблемы распознать надпись, думаю не возникнет.505693.jpg Данные микросхемы производятся разными производителями и маркируются так же по разному. MC34063 KA34063 UCC34063 И т.д. Как видно, меняются только первые буквы, цифры остаются неизменными, потому обычно ее называют просто 34063. Мне достались первые, MC34063.e86a10.jpg Фото рядом с такой же микрухой, но другого производителя. Обозреваемая выделяется более четкой маркировкой.6ee520.jpg Что дальше можно обозреть я не знаю, потому перейду ко второй части обзора, познавательной. DC-DC преобразователи используются во многих местах, сейчас наверное уже тяжело встретить электронное устройство, где их нет. Существует три основные схемы преобразования, все они описаны в даташите к 34063, а так же в дополнении по ее применению, ну и в еще одном описании. Все описанные схемы не имеют гальванической развязки. Так же, если вы посмотрите внимательно все три схемы, то заметите, что они очень похожи и отличаются перестановкой местами трех компонентов, дросселя, диода и силового ключа. Сначала самая распространенная. Step-down или понижающий ШИМ преобразователь. Применяется там, где надо понизить напряжение, причем сделать это с максимальным КПД. Напряжение на входе всегда больше, чем на выходе, обычно минимум на 2-3 Вольта, чем больше разница, тем лучше (в разумных пределах). При этом ток на входе меньше, чем на выходе. Такую схемотехнику применяют часто на материнских платах, правда преобразователи там обычно многофазные и с синхронным выпрямлением, но суть остается прежней, Step-Down. В этой схеме дроссель накапливает энергию при открытом ключе, а после закрытия ключа напряжение на дросселе (за счёт самоиндукции) заряжает выходной конденсаторeeca4d.jpg Следующая схема применяется немного реже первой. Ее часто можно встретить в Power-bank, где из напряжения аккумулятора в 3-4.2 Вольта получается стабилизированные 5 Вольт. При помощи такой схемы можно получить и больше, чем 5 Вольт, но надо учитывать, что чем больше разница напряжений, тем тяжелее работать преобразователю. Так же есть одна не очень приятная особенность данного решения, выход нельзя отключить «программно». Т.е. аккумулятор всегда подключен к выходу через диод. Так же в случае КЗ ток будет ограничен только внутренним сопротивлением нагрузки и батареи. Для защиты от этого применяют либо предохранители, либо дополнительный силовой ключ. Так же как и в прошлый раз, при открытом силовом ключе сначала накапливается энергия в дросселе, после закрытия ключа ток на дросселе меняет свою полярность и суммируясь с напряжением батареи поступает на выход через диод. Напряжение на выходе такой схемы не может быть ниже напряжения на входе минус падение на диоде. Ток на входе больше чем на выходе (иногда значительно).110f97.jpg Третья схема применяется довольно редко, но не рассмотреть ее будет неправильно. Это схема имеет на выходе напряжение обратной полярности, чем на входе. Называется — инвертирующий преобразователь. В принципе данная схема может как повышать, так и понижать напряжение относительно входного, но из-за особенностей схемотехники чаще используется только для напряжений больше или равных входному. Преимущество данной схемотехники — возможность отключения напряжения на выходе при помощи закрытия силового ключа. Это так же умеет делать и первая схема. Как и в предыдущих схемах, энергия накапливается в дросселе, а после закрытия силового ключа поступает в нагрузку через обратно включенный диод.9c01d4.jpg Когда я задумывал данный обзор, то не знал, что лучше выбрать для примера. Были варианты сделать понижающий преобразователь для РоЕ или повышающий для питания светодиода, но как то все это было неинтересно и совсем скучно. Но несколько дней назад позвонил товарищ и попросил помочь ему с решением одной задачки. Надо было получить выходное стабилизированное напряжение независимо от того, входно больше или меньше выходного. Т.е. нужен был повышающе-понижающий преобразователь. Топология данных преобразователей называется SEPIC (Single-ended primary-inductor converter). Еще пара неплохих документов по данной топологии. 1, 2. Схема данного типа преобразователей заметно сложнее и содержит дополнительный конденсатор и дроссель.dde18c.jpgВот по этой схеме я и решил делатьДля примера я решил делать преобразователь, способный давать стабилизированные 12 Вольт при колебаниях входного от 9 до 16 Вольт. Правда мощность преобразователя невелика, так как используется встроенный ключ микросхемы, но решение вполне работоспособно. Если умощнить схему, поставить дополнительный полевой транзистор, дроссели на больший ток и т.д. то такая схема может помочь решить проблему питания 3,5 дюйма жесткого диска в машине. Так же, такие преобразователи могут помочь решить проблему получения, ставшего уже популярным, напряжения 3.3 Вольт от одного литиевого аккумулятора в диапазоне 3-4.2 Вольта. Но для начала превратим условную схему в принципиальную.90a42d.jpg После этого превратим ее в трассировку, не будем же мы на монтажной плате все ваять.07b606.jpg Ну дальше я пропущу этапы, описанные в одном из моих обзоров, где я показал, как изготавливать печатную плату. В итоге получилась небольшая платка, размеры платы 28х22.5, толщина после запайки деталей — 8мм.8862af.jpg Нарыл по дому всяких разных деталек. Дроссели у меня были в одном из обзоров. Резисторы всегда есть. Конденсаторы частично были, а частично выпаял из разных устройств. Керамический на 10мкФ выпаял из старого жесткого диска (еще они водятся на платах мониторов), алюминиевый SMD взял из старого CD-ROMа. Спаял платку, получилось вроде аккуратно. Надо было сделать фото на каком нибудь спичечном коробке, но забыл. Размеры платы примерно в 2.5 раза меньше спичечного коробка. Плата поближе, старался компоновать плату поплотнее, свободного месте не очень много. Резистор 0.25 Ома образован четырьма по 1 Ом параллельно в 2 этажа. Ну а дальше результаты проверки.Фотографий много, потому убрал под спойлерПроверял в четырех диапазонах, но случайно получилось в пяти, не стал этому противиться, а просто сделал еще одно фото. У меня не было резистора на 13КОм, пришлось впаять на 12, поэтому на выходе напряжение несколько занижено. Но так как плату я делал просто для проверки микросхемы (т.е. сама по себе эта плата больше для меня никакой ценности не несет) и написания обзора, то не стал заморачиваться. В качестве нагрузки была лампа накаливания, ток нагрузки около 225мА На входе 9 Вольт, на выходе 11.45 На входе 11 Вольт, на выходе 11.44. На входе 13 вольт, на выходе все те же 11.44 На входе 15 Вольт, на выходе опять 11.44. 🙂 После этого думал закончить, но так как в схеме указал диапазон до 16 Вольт, то и проверить решил на 16. На входе 16.28, на выходе 11.44 Так как я разжился цифровым осциллографом, то решил снять осциллограммы.Я их так же спрятал под спойлер, так как их довольно многоЯ сделал осциллограммы на выходе микросхемы и на выходе БП. В щупе был включен делитель сигнала на 10. 9 Вольт

11 Вольт
13 Вольт
15 Вольт. Здесь я изменил время развертки, так как не получалось впихнуть весь период в одно окно.
Это конечно игрушка, мощность преобразователя смешная, хотя и полезная. Но товарищу я подобрал несколько более мощный вариант на Алиэксрессе. Возможно кому то будет и полезно. Ссылки по теме.Повышающе-понижающий DC-DC преобразователь 7..14В / 9В 0,5АMC34063 sepicСтабилизатор тока светодиодов на микросхеме МС34063MC34063A описание, схема подключения.Калькулятор DC-DC MC34063 Файл печатной платы, схема, даташит. — ссылка. В общем вот такой получился спонтанный микрообзор микросхемы.Резюме. Микросхемы вполне годные, меня устроили, особенно по этой цене. Надеюсь, что обзор будет полезен. Если есть идеи по доработке, буду рад выслушать. Наверняка где нибудь накосячил, так как писал без шпаргалок, потому если заметили ошибки, сильно не ругайте.Хинт по 34063Вместо котикаА вот так выглядит кристалл 34063 при более детальном рассмотрении в электронный микроскоп. Но так как микроскоп я еще не купил, то фото из инета.Используемые источники:

  • http://www.joyta.ru/3636-preobrazovatel-napryazheniya-na-mc34063/
  • http://hardelectronics.ru/mc34063.html
  • https://mysku.ru/blog/aliexpress/29891.html

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации