Андрей Смирнов
Время чтения: ~15 мин.
Просмотров: 13

Суперконденсатор. Их принцип действия. Область применения.

Суперконденсаторы — это электрохимические конденсаторы, которые существенно отличаются от обычных практически неограниченной долговечностью, более низкими потерями тока и большими значениями удельной мощности. При этом они имеют на порядок меньшие габариты. То есть это батарея нового поколения, которая сможет открыть многочисленные перспективы в энергетике. В первую очередь большой интерес к суперконденсаторам вызван возможностью замены ими батарей, а также создания гибких источников питания большой мощности.

Стратегической задачей для ученых является создание батарей высокой емкости, которые можно было бы использовать в разных областях, к примеру, для электромобилей. Это позволит обеспечить поездки на длительные дистанции и быструю зарядку батарей. Также это гарантирует более экономичную работу возобновляемых источников энергии путем аккумулирования избытков энергии: ветроэнергетические установки, солнечные батареи и так далее.

Суперконденсатор – это тот же аккумулятор, но на порядок с лучшими свойствами. В первую очередь это относится к существенно более быстрому заряду и разряду. Суперконденсатор представляет элемент с двумя электродами, между ними располагается электролит. Электроды выполнены в виде пластины из определенного материала. Для улучшения электрических параметров суперконденсатора, пластины могут дополнительно покрываться пористым материалом, к примеру, активированным углем. В качестве электролита может применяться неорганическое или органическое вещество.

В целом суперконденсатор – это гибрид химической аккумуляторной батареи и обычного конденсатора:
  • Главное отличие суперконденсатора от привычного конденсатора — в наличии у первого не просто диэлектрика между электродами, а двойного электрического слоя. В результате между электродами образуется очень маленькое расстояние, а его возможность накапливать электрическую энергию (электрическая емкость) получается намного выше.
  • Кроме этого суперконденсатор от аккумуляторной батареи отличается скоростью накапливания, а также степенью отдачи электрического заряда. Благодаря применению двойного электрического слоя повышается площадь поверхности электродов при тех же общих габаритах. То есть в устройстве сочетаются лучшие электрические характеристики – существенная емкость аккумулятора и скорость конденсатора.

Впервые о суперконденсаторе заговорили в 1962 году. Именно тогда химик американской компании Standard Oil Company Роберт Райтмаер подал заявку на патент, где подробно расписывался механизм сохранения электрической энергии в конденсаторе, который обладал «двойным электрическим слоем». В предлагаемом варианте акцент делался на материал обкладок. У электродов должна быть различная проводимость: один электрод должен иметь электронную проводимость, а другой – ионную. В результате при заряде конденсатора происходило разделение положительных центров и электронов в электронном проводнике, а также разделение анионов и катионов в ионном проводнике.

В 1971 году лицензия досталась японской компании NEC, которая к этому времени занималась всеми направлениями электронной коммуникации. NEC удалось успешно продвинуть технологию под названием «Суперконденсатор». Затем суперконденсаторами стали заниматься и другие компании. С 2000-х годов активное развитие технологии началось во многих странах мира.

Виды

Суперконденсаторы сегодня подразделяются на:
  • Двойнослойные конденсаторы (ДСК).
  • Псевдоконденсаторы.
  • Гибридные конденсаторы.

Двойнослойный суперконденсатор предполагает наличие двух пористых электродов, выполненных из электропроводящих материалов, а также разделенных заполненным электролитом сепаратором. Здесь процесс запасания энергии идет за счет разделения заряда на электродах с весьма большой разностью потенциалов между ними. Электрический заряд двойнослойных конденсаторов определяется непосредственно емкостью двойного электрического слоя, то есть отдельного конденсатора на поверхности каждого электрода. Между собой они соединяются последовательно посредством электролита, который является проводником с ионной проводимостью.

Псевдоконденсаторы уже ближе к перезаряжаемым аккумуляторам. В них имеются два твердых электрода. Принцип действия сочетает два механизма сохранения энергии: фарадеевские процессы, которые схожи с процессами, происходящими в батареях и аккумуляторах, а также электростатическое взаимодействие, свойственное конденсаторам с двойным электрическим слоем. Приставка «псевдо» появилась вследствие того, что емкость ДЭС зависит не только от электростатических процессов, но и быстрых фарадеевских реакций с переносом заряда.

Гибридные конденсаторы – это переходный вариант между конденсатором и аккумулятором. Слово «гибридные» обусловлено тем, что электроды в гибридных конденсаторах производятся из различных материалов, а накопление заряда осуществляется по разным механизмам. Большинством случаев в гибридных конденсаторах катодом является материал с псевдоемкостью. В результате аккумулирование заряда на катоде осуществляется вследствие окислительно-восстановительных реакций, что увеличивает удельную емкость конденсатора, а также расширяет область рабочих напряжений.

В гибридных конденсаторах часто применяют комбинацию электродов из допированных проводящих полимеров и смешанных оксидов. Весьма перспективными могут стать композиционные материалы, которые состоят из оксидов металлов, осажденных на проводящие полимеры или углеродные носители.

Принцип действия

Суперконденсаторы, как высокоемкие конденсаторы, производят накопление энергии электростатическим способом, поляризуя раствор электролита. При накоплении энергии в суперконденсаторе химические реакции не задействуются, хотя суперконденсатор является электрохимическим устройством. В силу высокой обратимости механизма накопления энергии, конденсаторы способны тысячи раз заряжаться и разряжаться.

Superkondensatory ustroistvo

Суперконденсатор – электрохимический конденсатор, который имеет способность накапливать чрезвычайно большое количество энергии по отношению к его размеру, а также в сравнении с традиционным конденсатором. Данное свойство суперконденсатора особенно интересно в создании гибридных транспортных средств в автомобильной промышленности, в том числе в производстве машин на аккумуляторной электротяге, в которых суперконденсаторы применяются в виде дополнительного накопителя энергии.

В большинстве случаев, в суперконденсаторе действуют два активных электрода, которые разделены непроводящим материалом, размещенным между металлическими токовыми коллекторами. Органический или водный электролит пропитывает пористые электроды, обеспечивая появление носителей заряда в устройстве с последующим его накоплением.

Применения и особенности
Области применения суперконденсаторов могут быть поделены на следующие направления:
  • Накопительные устройства для источников возобновляемой энергии, к примеру, топливных элементов, океанской волны, ветра и солнца.
  • Транспортные средства, к примеру, устройства запуска двигателя машин, гибридные электрические транспортные средства, автомобили на водородном топливе, локомотивы поездов.
  • Как накопители энергии в жилищном секторе, к примеру, в зданиях с солнечными фотоэлектрическими системами, в которых имеется необходимость в аккумуляторах с повышенными характеристиками.
  • Благодаря высокой плотности энергии и удельной емкости, суперконденсаторы применяются в электронных устройствах в виде источника кратковременного электропитания.
  • В системах бесперебойного электропитания. Достоинством является то, что они в критических областях применения обеспечивают мгновенную мощность.
  • Среди развивающихся областей суперконденсаторы находят применение в системах бесперебойного электропитания с топливными элементами.
  • В устройствах демпфирования пиковой нагрузки, а также запуска двигателя.
  • Электроэнергетика с критическими нагрузками, коммуникации аэропортов, вышки беспроводной связи, банковские центры, больницы.
  • Источник резервного питания для материнских плат, микропроцессоров и запоминающих устройств.
  • Мобильные телефоны.
Достоинства и недостатки
Среди достоинств суперконденсаторов можно отметить:
  • Низкая стоимость устройства накопления энергии в расчете на 1 фарад.
  • Высочайшая плотность емкости.
  • Высокий кпд цикла, который достигает 95% и выше.
  • Длительный срок службы.
  • Надежность устройства.
  • Экологическая безопасность.
  • Бесперебойная эксплуатация.
  • Весьма высокая удельная энергия и удельная мощность.
  • Широкий диапазон рабочих температур.
  • Большое количество циклов практически с неизменными параметрами.
  • Высокая скорость заряда и разряда.
  • Сниженная токсичность применяемых материалов.
  • Отличная обратимость механизма накопления энергии.
  • Допустимость разряда до нуля.
  • Малый вес в сравнении с электролитическими конденсаторами.
Среди недостатков суперконденсаторов можно отметить:
  • Относительно малая энергетическая плотность.
  • Не способность обеспечить достаточное накопление энергии.
  • Весьма низкое напряжение на одну единицу элемента.
  • Высокая степень саморазряда.
  • Недостаточное развитие технологий.
Суперконденсаторы в перспективе

В ближайшем будущем суперконденсаторы станут применять повсеместно. Многообещающими областями для суперконденсаторов могут стать медицинская и авиакосмическая промышленность, военная техника.

  • При разработке суперконденсаторов все больше повышается их удельная емкость. В результате во многих технических сферах произойдет полная замена аккумуляторов на конденсаторы.
  • Произойдет интегрирование суперконденсаторов в самые разные структуры: от электроники до всевозможных настроек. Появится умная одежда с использованием этих устройств. Конденсаторы обеспечивают экологически чистый метод экономии энергии, поэтому они имеют больше возможностей для передачи и хранения энергии в сравнении с иными энергосберегающими технологиями.
  • Повсеместное использование суперконденсаторов: автомобили, трамваи, автобусы, электроника, в особенности смартфоны и другая мобильная техника. Зарядка будет занимать секунды, а запасаемой энергии будет хватать надолго.
Похожие темы:
  • Виды конденсаторов. Конструктивные особенности. Классификация
  • Углеродные нанотрубки. Что это? Устройство, применение и особенности
  • Графен. Что это? Устройство, применения и особенности, перспективы
  • Метаматериалы. Виды и устройство. Работа и применение

РубрикаОБОРУДОВАНИЕ

  • 18 февраля 2014 г. в 15:22
  • Поделиться

Для накопления электроэнергии люди сначала использовали конденсаторы. Потом, когда электротехника вышла за пределы лабораторных опытов, изобрели аккумуляторы, ставшие основным средством для запасания электрической энергии. Но в начале XXI века снова предлагается использовать конденсаторы для питания электрооборудования. Насколько это возможно и уйдут ли аккумуляторы окончательно в прошлое?

Причина, по которой конденсаторы были вытеснены аккумуляторами, была связана со значительно большими значениями электроэнергии, которые они способны накапливать. Другой причиной является то, что при разряде напряжение на выходе аккумулятора меняется очень слабо, так что стабилизатор напряжения или не требуется или же может иметь очень простую конструкцию.

Главное различие между конденсаторами и аккумуляторами заключается в том, что конденсаторы непосредственно хранят электрический заряд, а аккумуляторы превращают электрическую энергию в химическую, запасают ее, а потом обратно преобразуют химическую энерию в электрическую.

При преобразованиях энергии часть ее теряется. Поэтому даже у лучших аккумуляторов КПД составляет не более 90%, в то время, как у конденсаторов он может достигать 99%. Интенсивность химических реакций зависит от температуры, поэтому на морозе аккумуляторы работают заметно хуже, чем при комнатной температуре. Кроме этого, химические реакции в аккумуляторах не полностью обратимы. Отсюда малое количество циклов заряда-разряда (порядка единиц тысяч, чаще всего ресурс аккумулятора составляет около 1000 циклов заряда-разряда), а также «эффект памяти». Напомним, что «эффект памяти» заключается в том, что аккумулятор нужно всегда разряжать до определенной величины накопленной энергии, тогда его емкость будет максимальной. Если же после разрядки в нем остается больше энергии, то емкость аккумулятора будет постепенно уменьшаться. «Эффект памяти» свойственнен практически всем серийно выпускаемым типам аккумуляторов, кроме, кислотных (включая их разновидности — гелевые и AGM). Хотя принято считать, что литий-ионным и литий-полимерным аккумуляторам он не свойственнен, на самом деле и у них он есть, просто проявляется в меньшей степени, чем в других типах. Что же касается кислотных аккумуляторов, то в них проявляется эффект сульфатации пластин, вызывающий необратимую порчу источника питания. Одной из причин является длительное нахождение аккумулятора в состоянии заряда менее, чем на 50%.

Применительно к альтернативной энергетике «эффект памяти» и сульфатация пластин являются серьезными проблемами. Дело в том, что поступление энергии от таких источников, как солнечные батареи и ветряки, сложно спрогнозировать. В результате заряд и разряд аккумуляторов происходят хаотично, в неоптимальном режиме.

Для современного ритма жизни оказывается абсолютно неприемлемо, что аккумуляторы приходится заряжать несколько часов. Например, как вы себе представляете поездку на электромобиле на дальние расстояния, если разрядившийся аккумулятор задержит вас на несколько часов в пункте зарядки? Скорость зарядки аккумулятора ограничена скоростью протекающих в нем химических процессов. Можно сократить время зарядки до 1 часа, но никак не до нескольких минут. В то же время, скорость зарядки конденсатора ограничена только максимальным током, который дает зарядное устройство.

Перечисленные недостатки аккумуляторов сделали актуальным использование вместо них конденсаторов.

Использование двойного электрического слоя

На протяжении многих десятилетий самой большой емкостью обладали электролитические конденсаторы. В них одной из обкладок являлась металлическая фольга, другой — электролит, а изоляцией между обкладками — окись металла, которой покрыта фольга. У электролитических конденсаторов емкость может достигать сотых долей фарады, что недостаточно для того, чтобы полноценно заменить аккумулятор.

67026c1bc8bdc29f4025ce054f84786aee082a00.jpg

Сравнение конструкций разных типов конденстаторов (Источник: Википедия)

Большую емкость, измеряемую тысячами фарад, позволяют получить конденсаторы, основанные на так называемом двойном электрическом слое. Принцип их работы следующий. Двойной электрический слой возникает при определенных условиях на границе веществ в твердой и жидкой фазах. Образуются два слоя ионов с зарядами противоположного знака, но одинаковой величины. Если очень упростить ситуацию, то образуется конденсатор, «обкладками» которого являются указанные слои ионов, расстояние между которыми равно нескольким атомам.

5395f909f8253c84546b13049ee9350b988d0490.jpg

Суперконденсаторы различной емкости производства Maxwell

Конденсаторы, основанные на данном эффекте, иногда называют ионисторами. На самом деле, этот термин не только к конденсаторам, в которых накапливается электрический заряд, но и к другим устройствам для накопления электроэнергии — с частичным преобразованием электрической энергии в химическую наряду с сохранением электрического заряда (гибридный ионистор), а также для аккумуляторов, основанных на двойном электрическом слое (так называемые псевдоконденсаторы). Поэтому более подходящим является термин «суперконденсаторы». Иногда вместо него используется тождественный ему термин «ультраконденсатор».

Техническая реализация

Суперконденсатор представляет собой две обкладки из активированного угля, залитые электролитом. Между ними расположена мембрана, которая пропускает электролит, но препятствует физическому перемещению частиц активированного угля между обкладками.

Следует отметить, что суперконденсаторы сами по себе не имеют полярности. Этим они принципиально отличаются от электролитических конденсаторов, для которых, как правило, свойственна полярность, несоблюдение которой приводит к выходу конденсатора из строя. Тем не менее, на суперконденсаторах также наносится полярности. Связано это с тем, что суперконденсаторы сходят с заводского конвейера уже заряженными, маркировка и означает полярность этого заряда.

Параметры суперконденсаторов

Максимальная емкость отдельного суперконденсатора, достигнутая на момент написания статьи, составляет 12000 Ф. У массово выпускаемых супероконденсаторов она не превышает 3000 Ф. Максимально допустимое напряжение между обкладками не превышает 10 В. Для серийно выпускаемых суперконденсаторов этот показатель, как правило, лежит в пределах 2,3 – 2,7 В.   Низкое рабочее напряжение требует использование преобразователя напряжения с функцией стабилизатора. Дело в том, что при разряде напряжение на обкладках конденсатора изменяется в широких пределах. Построение преобразователя напряжения для подключения нагрузки и зарядного устройства являются нетривиальной задачей. Предположим, что вам нужно питать нагрузку с мощностью 60 Вт.

Для упрощения рассмотрения вопроса пренебрежем потерями в преобразователе напряжения и стабилизаторе. В том случае, если вы работаете с обычным аккумулятором с напряжением 12 В, то управляющая электроника должна выдерживать ток в 5 А. Такие электронные приборы широко распространены и стоят недорого. Но совсем другая ситуация складывается при использовании суперконденсатора, напряжение на котором составляет 2,5 В. Тогда ток, протекающий через электронные компоненты преобразователя, может достигать 24 А, что требует новых подходов к схмотехнике и современной элементной базы. Именно сложностью с построением преобразователя и стабилизатора можно объяснить тот факт, что суперконденсаторы, серийный выпуск которых был начат еще в 70-х годах XX века, только сейчас стали широко использоваться в самых разных областях.

Суперконденсаторы могут соединяться в батареи с использованием последовательного или параллельного соединения. В первом случае повышается максимально допустимое напряжение. Во втором случае — емкость. Повышение максимально допустимого напряжения таким способом является одним из способов решения проблемы, но заплатить за нее придется снижением емкости.

Размеры суперконденсаторов, естественно, зависят от их емкости. Типичный суперконденсатор емкостью 3000 Ф представляет собой цилиндр диаметром около 5 см и длиной 14 см. При емкости 10 Ф суперконденсатор имеет размеры, сопоставимые с человеческим ногтем.

Хорошие суперконденсаторы способны выдержать сотни тысяч циклов заряда-разряда, превосходя по этому параметру аккумуляторы примерно в 100 раз. Но, как и у электролитических конденсаторов, для суперконденсаторов стоит проблема старения из-за постепенной утечки электролита. Пока сколь-нибудь полной статистики выхода из строя суперконденсаторов по данной причине не накоплено, но по косвенным данным, срок службы суперконденсаторов можно приблизительно оценить величиной 15 лет.

Накапливаемая энергия

Количество энергии, запасенной в конденсаторе, выраженное в джоулях:

E = CU2/2, где C — емкость, выраженная в фарадах, U — напряжение на обкладках, выраженное в вольтах.

Количество энергии, запасенной в конденсаторе, выраженное в кВтч, равно:

W = CU2/7200000

Отсюда, конденсатор емкостью 3000 Ф с напряжением между обкладками 2,5 В способен запасти в себе только 0,0026 кВтч. Как это можно соотнести, например, с литий-ионным аккумулятором? Если принять его выходное напряжение не зависящим от степени разряда и равным 3,6 В, то количество энергии 0,0026 кВтч будет запасено в литий-ионном аккумуляторе емкостью 0,72 Ач. Увы, весьма скромный результат.

Применение суперконденсаторов

Системы аварийного освещения являются тем местом, где использование суперконденсаторов вместо аккумуляторов дает ощутимый выигрыш. В самом деле, именно для этого применения характерна неравномерность разрядки. Кроме этого, желательно, чтобы зарядка аварийного светильника происходила быстро, и чтобы используемый в нем резервный источник питания имел большую надежность. Источник резервного питания на основе суперконденсатора можно встроить непосредственно в светодиодную лампу T8. Такие лампы уже выпускаются рядом китайских фирм.

Как уже отмечалось, развитие суперконденсаторов во многом связано с интересом к альтернативным источникам энергии. Но практическое применение пока ограничено светодиодными светильниками, получающими энергию от солнца.

Активно развивается такое направление как использование суперконденсаторов для запуска электрооборудования.

Суперконденсаторы способны дать большое количество энергии в короткий интервал времени. Запитывая электрооборудование в момент пуска от суперконденсатора, можно уменьшить пиковые нагрузки на электросеть и в конечном счете уменьшить запас на пусковые токи, добившись огромной экономии средств.

Соединив несколько суперконденсаторов в батарею, мы можем достичь емкости, сопоставимой с аккумуляторами, используемыми в электромобилях. Но весить эта батарея будет в несколько раз больше аккумулятора, что для транспортных средств неприемлемо. Решить проблему можно, используя суперконденсаторы на основе графена, но они пока существуют только в качестве опытных образцов. Тем не менее, перспективный вариант знаменитого «Ё-мобиля», работающий только от электричества, в качестве источника питания будет использовать суперконденсаторы нового поколения, разработка которых ведется российскими учеными.

Суперконденсаторы также дадут выигрыш при замене аккумуляторов в обычных машинах, работающих на бензине или дизельном топливе — их использование в таких транспортных средствах уже является реальностью.

Пока же самым удачным из реализованных проектов внедрения суперконденсаторов можно считать новые троллейбусы российского производства, вышедшие недавно на улицы Москвы. При прекращении подачи напряжения в контактную сеть или же при «слетании» токосъемников троллейбус может проехать на небольшой (порядка 15 км/ч) скорости несколько сотен метров в место, где он не будет мешать движению на дороге. Источником энергии при таких маневрах для него является батарея суперконденсаторов.

В общем, пока суперконденсаторы могут вытеснить аккумуляторы только в отдельных «нишах». Но технологии бурно развиваются, что позволяет ожидать, что уже в ближайшем будущем область применения суперконденсаторов значительно расширится.

Алексей Васильев

Информация о компании

Элек.ру, ОООКомпания «Элек.ру» — команда профессионалов, обеспечивающих эффективную работу и развитие крупнейших рекламно-информационных проектов электротехнической отрасли: Интернет-портала Elec.ru и журнала «Электротехнический рынок».Контакты и адреса · Новости · Публикации · Видео

Персональная лента новостей Яндекс.Дзен от Elec.ru

Этой новости уже минимум год, но на хабре никто об этом не написал. Думаю, что многие как и я до сегодняшнего дня считают, что суперконденсаторы(ионисторы) — это до сих пор что-то экспериментальное или с малой емкостью.9b6f7a0bfc7eacf1c22c5b9defef8345.jpg Но это уже не так. Среди десятков новостей о новых типах аккумуляторов мы кажется имеем технологию, у которой правда есть будущее. Оказывается уже сейчас можно купить суперконденсаторы емкостью 3000 фарад и напряжением 2.7 вольт — если переводить в ампер-часы, то это будет около 2200 mAh. Теоретических — это значит, что последние миллиамперы конденсатор будет выдавать при напряжении в доли вольта. Стоимость такого элемента составляет 30-80 долларов — зависит от производителя. Его размер значительно больше 18650. Вес такой батарейки 405 грамм, диаметр 6.1 см, длина 13 см. Ток утечки — 5.2 мА, что значит за 10 дней элемент разрядится наполовину. Купить поиграться можно здесь и здесь. Фирма Maxwell выпускает целые сборки из ионисторов для разных целей и разного вольтажа: www.maxwell.com/products/ultracapacitors/modules Собственно все.6977.3k 69Используемые источники:

  • https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/superkondensatory/
  • https://www.elec.ru/articles/kondensator-vmesto-akkumulyatora/
  • https://m.habr.com/post/382723/

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации