Андрей Смирнов
Время чтения: ~11 мин.
Просмотров: 19

Суперконденсаторы или Ионисторы вместо аккумулятора. Новая технология Ё-мобиль.

Ионистор вместо аккумулятора — практический обзор сборки суперконденсатора

ionistor-vmesto-akkumulyatora-1-300x169.jpg

Ионистор вместо аккумулятора (он же суперконденсатор, ультраконденсатор) — в принципе это тот же конденсатор, только имеющий большую емкость, которую можно сравнить с аккумулятором. Вот именно такое устройство рассчитанное на напряжение 12v я собрал для нужд в бытовом хозяйстве. Практически такой прибор способен работать во много раз дольше, чем аккумуляторы различных типов, конечно при условии эксплуатации в определенных режимах. Вот в чем особенность применения ионистора вместо аккумулятора и его преимущество:

  • прибору не страшен полный разряд до нулевого значения;
  • в несколько сотен раз больше способен выдержать моментов заряда/разряда;
  • прибор не боится максимальных значений по току.

Но не только такие особенности имеются у ионистора использующегося вместо аккумулятора, о них я скажу после выполнения сборки накопителя.

Необходимые компоненты

  • Суперконденсаторы в количестве восьми штук с номиналом 2,7v х 500F
  • Одножильый провод сечением от 2 мм²
  • Пару винтов и гаек
  • Инструмент: паяльник, пинцет, кусачки.
  • Расходники: припой, флюс.

Ионистор вместо аккумулятора — порядок сборки батареи

В данном обзоре я буду собирать накопитель энергии с применением восьми конденсаторов, включенных по встречно-параллельной схеме. В принципе будет организованно четыре пары по две емкости включенных параллельно, а пары в свою очередь соединены последовательно.

ionistor-vmesto-akkumulyatora-4-300x114.jpg

Эмалированный провод нужно выровнять и убрать с него лак. Выполняется это с помощью рабочего ножа или специального инструмента для зачистки проводов ( у кого он имеется).

ionistor-vmesto-akkumulyatora-5-300x169.jpg

Формируем медный провод в соединительные шины

Необходимо изготовить три квадратных элемента и пару полюсов для клемм «+» и «-«

Читайте также:  Защита от перенапряжения

К сформированным изделиям для контактов припаиваем гайки, к которым будут подключаться провода питания.

Залуживаем места соединения квадратов.

Соединяем емкости в батарею, припаиваем проводники к выводам конденсатора, соблюдая при этом полярность.

Вначале нужно собрать четыре группы.

Теперь припаиваем шины для подключения проводов питания.

На этом этапе нужно зарядить батарею током 5А.

По истечению пяти минут накопитель будет полностью заряжен.

Делаем испытательный тест лампой накаливания.

Делаем короткое замыкание выходных контактов — провод разогрелся до красного состояния.

Испытываем батарею подключением электромотора.

Где такая конструкцию используется

Использовать можно ионистор вместо аккумулятора, там где присутствуют большие и цикличные нагрузки по току. Классический пример: накопительная емкость для сабвуфера установленного в автомобиле. Кроме этого суперконденсатор может быть задействован в устройствах где происходят постоянные циклы зарядки/разрядки, например: устройства накопления солнечной энергии с последующей ее передачей фонарям освещения в ночное время.

Сборка ионистора вместо аккумулятора 12v, 100A

Требования снизить размеры радиодеталей при увеличении их технических характеристиках послужило причиной появления большого количества приборов, которые сегодня используются повсеместно. Это в полной мере коснулось и конденсаторов. Так называемые ионистры или суперконденсаторы являются элементами с большой емкостью (разброс данного показателя достаточно широк от 0,01 до 30 фарад) с напряжением зарядки от 3 до 30 вольт. При этом их размеры очень малы. А так как предмет нашего разговора – это ионистр своими руками, то необходимо в первую очередь разобраться с самим элементом, то есть, что он собой представляет.

Конструктивные особенности ионистра

По сути, это обычный конденсатор с большой емкостью. Но у ионистров большое сопротивление, потому что в основе элемента лежит электролит. Это первое. Второе – это небольшое напряжение зарядки. Все дело в том, что в этом суперконденсаторе обкладки располагаются очень близко друг к другу. Именно это и является причиной сниженного напряжения, но именно по этой причине и увеличивается емкость конденсатора.

Заводские ионистры изготавливаются из разных материалов. Обкладки обычно делаются из фольги, которые разграничивает сухое вещество сепарирующего действия. К примеру, активированный уголь (для больших обкладок), оксиды металлов, полимерные вещества, у которых высокая электрическая проводимость.

Собираем ионистр своими руками

Сборка ионистра своими руками – дело не самое простое, но в домашних условиях его сделать все же можно. Есть несколько конструкций, где присутствуют разные материалы. Предлагаем одну из них. Для этого вам понадобится:

  • металлическая баночка от кофе (50 г);
  • активированный уголь, который продается в аптеках, его можно заменить истолченными угольными электродами;
  • два круга из медной пластины;
  • вата.

В первую очередь необходимо приготовить электролит. Для этого сначала надо истолочь активированный уголь в порошок. Затем сделать солевой раствор, для чего в 100 г воды надо добавить 25 г соли, и все это хорошо перемешать. Далее, в раствор постепенно добавляется порошок активированного угля. Его количество определяет консистенция электролита, она должна быть плотностью, как замазка.

Читайте также:  Разбираемся как проверить тиристор мультиметром

После чего готовый электролит наносится на медные круги (на одну из сторон). Обратите внимание, чем толще слой электролита, тем больше емкость ионистра. И еще один момент, толщина наносимого электролита на двух кругах должна быть одинаковая. Итак, электроды готовы, теперь их надо разграничить материалом, который бы пропускал электрический ток, но не пропускал угольный порошок. Для этого используется обычная вата, хотя вариантов и здесь немало. Толщина ватного слоя определяет диаметр металлической баночки от кофе, то есть, вся эта электродная конструкция должна в нее спокойно поместиться. Отсюда, в принципе, и придется подбирать размеры самих электродов (медных кругов).

Остается только сами электроды подключить к выводам. Все, ионистр, изготовленный своими руками, да еще в домашних условиях, готов. У такой конструкции не очень большая емкость – не выше 0,3 фарад, да и напряжение зарядки всего лишь один вольт, но это самый настоящий ионистр.   

Заключение по теме

Что можно еще в дополнении сказать об этом элементе. Если его сравнивать, к примеру, с аккумулятором никель-металлгидридного типа, то ионистр спокойно может держать запас электроэнергии до 10% от аккумуляторной мощности. К тому же спад напряжения у него происходит линейно, а не скачкообразно. Но уровень зарядки элемента зависит от технологического его назначения.

Схема зарядки ионистора (суперконденсатора) своими руками

Автор: Mike(admin) от 31-05-2019, 07:55

Суперконденсаторы или ионисторы и их возможное использование в электромобилях, смартфонах и устройствах Интернета вещей в последнее время широко обсуждается, но сама идея создания суперконденсатора восходит к 1957 году, когда компания General Electric впервые провела эксперимент с целью увеличения емкости своего накопителя. За прошедшие годы технология суперконденсаторов значительно улучшилась, и сегодня они используются в качестве резервных батарей, солнечных батарей и других приложений, где требуется кратковременное повышение мощности. Многие ошибочно полагают, что ионисторы заменяют батареи в долгосрочной перспективе, но, по крайней мере, с современными технологиями суперконденсаторов – это не что иное, как конденсаторы с высокой емкостью зарядки.

1559278661_supercap1.jpg

В этой статье мы узнаем, как безопасно зарядить такие суперконденсаторы, разработав простую схему зарядного устройства, а затем использовать ее для зарядки нашего суперконденсатора, чтобы проверить, насколько он хорошо удерживает энергию. Подобно аккумуляторным элементам, суперконденсатор также можно комбинировать для формирования блоков питания, но подход к зарядке блока суперконденсаторов отличается и выходит за рамки данной статьи. Здесь будет использоваться простой и общедоступный суперконденсатор 1F емкостью 5,5 В, который выглядит как монета. Мы научимся заряжать такой суперконденсатор и использовать его в подходящих приложениях.

Сравнивая суперконденсатор с батареями или аккумуляторами, стоит сказать, что суперконденсаторы имеют низкую плотность заряда и худшие характеристики саморазряда, но все же с точки зрения времени зарядки, срока годности и цикла зарядки они превосходят батареи. В зависимости от наличия тока зарядки, суперконденсаторы могут заряжаться менее чем за минуту, а при правильном обращении они могут работать более десяти лет.

По сравнению с батареями суперконденсаторы имеют очень низкое значение ESR (эквивалентное последовательное сопротивление), что позволяет более высокому значению тока течь в или из конденсатора, позволяя ему быстрее заряжаться или разряжаться при высоком токе. Но из-за этой способности работать с большим током, суперконденсатор следует заряжать и разряжать безопасно для предотвращения теплового разгона. Когда дело доходит до зарядки суперконденсатора, есть два золотых правила: конденсатор должен заряжаться с правильной полярностью и с необходимым напряжением, не превышающим 90% его полной емкости по напряжению.

Суперконденсаторы, представленные на рынке сегодня, обычно рассчитаны на 2,5 В, 2,7 В или 5,5 В. Подобно литиевому элементу, эти конденсаторы должны быть соединены последовательно или параллельно для образования высоковольтных аккумуляторных батарей. В отличие от батарей, конденсатор при последовательном соединении будет взаимно суммировать его общее номинальное напряжение, что делает необходимым добавление большего количества конденсаторов для формирования батарейных блоков приличного значения. В нашем случае у нас есть конденсатор 1F 5,5 В, поэтому зарядное напряжение должно составлять 90% от 5,5, что составляет около 4,95 В.

При использовании конденсаторов в качестве элементов накопления энергии для питания наших устройств важно определить энергию, запасенную в конденсаторе, чтобы предсказать, как долго устройство может быть запитано. Формулы для расчета энергии, накопленной в конденсаторе, могут быть заданы как E = 1 / 2CV2. Таким образом, в нашем случае для конденсатора 1F 5,5 В при полной зарядке накопленная энергия будет составлять E = (1/2)* 1 * 5.52 = 15 Джоулей.

Теперь, используя это значение, мы можем вычислить, как долго конденсатор может питать устройства, например, если нам нужно 500 мА при 5 В в течение 10 секунд. Тогда энергия, необходимая для этого устройства, может быть рассчитана по формулам Энергия = Мощность x Время. Здесь мощность рассчитывается по формуле P = VI, поэтому для 500 мА и 5 В мощность составляет 2,5 Вт. Тогда Энергия = 2,5 х (10/60 * 60) = 0,00694 Вт*ч или 25 Дж. Отсюда можно сделать вывод, что нам понадобится как минимум два таких конденсаторов, подключенных параллельно (15 + 15 = 30), чтобы получить блок питания в 30 Дж, которого будет достаточно для питания нашего устройства в течение 10 секунд.

Когда дело доходит до конденсатора и аккумуляторов, мы должны быть очень осторожны с их полярностью. Конденсатор с подключенной обратной полярностью, скорее всего, нагреется и поплавится, а может и разорваться в худшем случае. У нас есть конденсатор типа монеты, полярность которого обозначена маленькой белой стрелкой, как показано ниже.

1559278614_supercap2.jpg

Направление стрелки указывает направление тока. Вы можете думать об этом так: ток всегда течет от положительного к отрицательному полюсу, и, следовательно, стрелка начинается с положительной стороны и указывает на отрицательную сторону. Здесь мы создадим зарядное устройство, которое стабилизирует напряжение в величину 5,5 В от адаптера 12 В, и используем его для зарядки суперконденсатора. Напряжение на конденсаторе будет контролироваться с помощью компаратора операционного усилителя, и как только конденсатор будет заряжен, схема автоматически отключит суперконденсатор от источника напряжения. Звучит интересно, так что давайте начнем.

Полная принципиальная схема для этой цепи зарядного устройства суперконденсатора приведена ниже.

1559278609_supercap3.jpg

Схема питается от 12-вольтового адаптера; Затем мы используем LM317 для регулирования 5,5 В для зарядки нашего конденсатора. Но эти 5,5 В будут поданы на конденсатор через полевой МОП-транзистор, действующий в качестве переключателя. Этот переключатель замыкается только в том случае, если напряжение на конденсаторе составляет менее 4,86 В, поскольку конденсатор получает заряд и при повышении напряжения, переключатель размыкается и препятствует дальнейшей зарядке батареи. Сравнение напряжения выполняется с использованием операционного усилителя, и мы также используем PNP-транзистор BC557 для свечения индикаторного светодиода, когда процесс зарядки завершен. Показанная выше принципиальная схема разбита на сегменты ниже для объяснения.

1559278583_supercap4.jpg

Рассмотрим цепь со стабилизатором напряжения.

1559278595_supercap5.jpg

Резистор R1 и R2 используется для определения выходного напряжения LM317 на основе формулы Vout = 1,25 x (1 + R2 / R1). Здесь мы использовали значения 1 кОм и 3,3 кОм для регулирования выходного напряжения 5,3 В, которое достаточно близко к 5,5 В. Теперь посмотрим на цепь компаратора.

1559278612_supercap6.jpg

Мы использовали ИС компаратора LM311 для сравнения значения напряжения суперконденсатора с фиксированным напряжением. Это фиксированное напряжение подается на второй вывод с использованием схемы делителя напряжения. Резисторы 2,2 кОм и 1,5 кОм дают напряжение 4,86 В от 12 В. Это 4,86 вольта по сравнению с опорным напряжением (напряжения конденсатора), который соединен с контактом 3. Когда опорное напряжение меньше, чем 4.86 В вывод 7 перейдет в высокий логический уровень 12 В с нагрузочным резистором 10 кОм. Это напряжение будет затем использоваться для управления полевым МОП-транзистором (MOSFET). Собственно, вот схема с MOSFET.

1559278659_supercap7.jpg

В данном случае IRFZ44N используется для подключения суперконденсатора к напряжению зарядки на основе сигнала от операционного усилителя. Когда выход операционного усилителя поднимается до высокого уровня, он выводит 12 В на вывод 7, который аналогичным образом включает полевой МОП-транзистор через его базовый вывод, когда выход операционного усилителя понижается до 0 В, и МОП-транзистор открывается. У нас также есть PNP-транзистор BC557, который включит светодиод, когда MOSFET выключен, указывая, что напряжение на конденсаторе превышает 4,8 В.

Схема довольно проста и может быть собрана на макетной плате или довольно легко и быстро спаяна перфорированной плате, например, так:

В© digitrode.ru

Версия для печати &nbsp&nbsp&nbspБлагодарим Вас за интерес к информационному проекту digitrode.ru. &nbsp&nbsp&nbspЕсли Вы хотите, чтобы интересные и полезные материалы выходили чаще, и было меньше рекламы, &nbsp&nbsp&nbspВы можее поддержать наш проект, пожертвовав любую сумму на его развитие.Вернуться1563—> В 

Категория: Схемы

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.

Комментарии:

Оставить комментарийИспользуемые источники:

  • https://usilitelstabo.ru/ionistor-vmesto-akkumulyatora.html
  • http://onlineelektrik.ru/eoborudovanie/kondensatori/kak-sdelat-ionistr-svoimi-rukami.html
  • http://digitrode.ru/schemes/2081-shema-zaryadki-ionistora-superkondensatora-svoimi-rukami.html

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации