Андрей Смирнов
Время чтения: ~11 мин.
Просмотров: 9

Киберкуб — Первый шаг в четвертое измерение

В геометрии гиперкуб — это n-мерная аналогия квадрата (n = 2) и куба (n = 3). Это замкнутая выпуклая фигура, состоящая из групп параллельных линий, расположенных на противоположных краях фигуры, и соединенных друг с другом под прямым углом.

Эта фигура также известная под названием тессеракт (tesseract). Тессеракт относится к кубу, как куб относится к квадрату. Более формально, тессеракт может быть описан как правильный выпуклый четырехмерный политоп (многогранник), чья граница состоит из восьми кубических ячеек.

Согласно Окфордскому словарю английского языка, слово «tesseract» было придумано в 1888 Чарльзом Говардом Хинтоном (Charles Howard Hinton) и использовано в его книге «Новая эра мысли» («A New Era of Thought»). Слово было образовано от греческого «П„ОµПѓПѓОµПЃОµП‚ О±ОєП„О№ОЅОµП‚» («четыре луча»), имеется в виде четыре оси координат. Кроме этого, в некоторых источниках, эту же фигуру называли тетракубом (tetracube).

n-мерный гиперкуб также называется n-кубом.

<center>

Точка — это гиперкуб размерности 0. Если сдвинуть точку на единицу длины, получится отрезок единичной длины — гиперкуб размерности 1. Далее, если сдвинуть отрезок на единицу длины в направлении перпендикулярном направлению отрезка получится куб — гиперкуб размерности 2. Сдвигая квадрат на единицу длины в направлении перпендикулярном плоскости квадрата, получается куб — гиперкуб размерности 3. Этот процесс может быть обобщен на любое количество измерений. Например, если сдвинуть куб на единицу длины в четвертом измерении, получится тессеракт.

Семейство гиперкубов является одним из немногих правильных многогранников, которые могут быть представлены в любом измерении.

Элементы гиперкуба

Гиперкуб размерности n имеет 2n «сторон» (одномерная линия имеет 2 точки; двухмерный квадрат — 4 стороны; трехмерный куб — 6 граней; четырехмерный тессеракт — 8 ячеек). Количество вершин (точек) гиперкуба равно 2n (например, для куба — 23 вершин).

Количество m-мерных гиперкубов на границе n-куба равно

Например, на границе гиперкуба находятся 8 кубов, 24 квадрата, 32 ребра и 16 вершин.

Элементы гиперкубов
n-куб Название (4-грань) (5-грань) (6-грань) (7-грань) (8-грань)
0-куб Точка 1 В  В  В  В  В  В  В  В 
1-куб Отрезок 2 1 В  В  В  В  В  В  В 
2-куб Квадрат 4 4 1 В  В  В  В  В  В 
3-куб Куб 8 12 6 1 В  В  В  В  В 
4-куб Тессеракт 16 32 24 8 1 В  В  В  В 
5-куб Пентеракт 32 80 80 40 10 1 В  В  В 
6-куб Хексеракт 64 192 240 160 60 12 1 В  В 
7-куб Хептеракт 128 448 672 560 280 84 14 1 В 
8-куб Октеракт 256 1024 1792 1792 1120 448 112 16 1
9-куб Эненеракт 512 2304 4608 5376 4032 2016 672 144 18

Проекция на плоскость

Формирование гиперкуба может быть представлено следующим способом:

  • Две точки A и B могут быть соединены, образуя отрезок AB. Два параллельных отрезка AB и CD могут быть соединены, образуя квадрат ABCD. Два параллельных квадрата ABCD и EFGH могут быть соединены, образуя куб ABCDEFGH.
  • Два параллельных куба ABCDEFGH и IJKLMNOP могут быть соединены, образуя гиперкуб ABCDEFGHIJKLMNOP.

Последнюю структуру нелегко представить, но возможно изобразить ее проекцию на двухмерное или трехмерное пространство. Более того, проекции на двухмерную плоскость могут быть более полезны возможностью перестановки позиций спроецированных вершин. В этом случае можно получить изображения, которые больше не отражают пространственные отношения элементов внутри тессеракта, но иллюстрируют структуру соединений вершин, как на примерах ниже.

<center>

На первой иллюстрации показано, как в принципе образуется тессеракт путем соединения двух кубов. Эта схема похожа на схему создания куба из двух квадратов. На второй схеме показано, что все ребра тессеракта имеют одинаковую длину. Эта схема также заставляют искать соединенные друг с другом кубы. На третьей схеме вершины тессеракта расположены в соответствии с расстояниями вдоль граней относительно нижней точки. Эта схема интересна тем, что она используется как базовая схема для сетевой топологии соединения процессоров при организации параллельных вычислений: расстояние между любыми двумя узлами не превышает 4 длин ребер, и существует много различных путей для уравновешивания нагрузки.

Развертка гиперкуба

Тессеракт может быть развернут в восемь кубов, подобно тому как куб может быть развернут в шесть квадратов. Многогранник-равертка гиперкуба называется сетью. Существует 261 различных вариантов сетей. Справа показан один из вариантов

Гиперкуб в искусстве

Гиперкуб появился в научно-фантастической литературе с 1940 года, когда Роберт Хайнлайн в рассказе «Дом, который построил Тил» («And He Built a Crooked House») описал дом, построенный по форме развертки тессеракта. В рассказе этот Далее этот дом сворачивается, превращаясь в четырехмерный тессеракт. После этого гиперкуб появляется во многих книгах и новеллах.

В фильме «Куб 2: Гиперкуб» рассказывается о восьми людях, запертых в сети гиперкубов.

На картине Сальвадора Дали «Распятие» («Crucifixion (Corpus Hypercubus)», 1954) изображен Иисус распятый на развертке тессеракта. Эту картину можно увидеть в Музее Искусств (Metropolitan Museum of Art) в Нью-Йорке.

Заключение

Гиперкуб — одна из простейших четырехмерных объектов, на примере которого можно увидеть всю сложность и необычность четвертого измерения. И то, что выглядит невозможным в трех измерениях, возможно в четырех, например, невозможные фигур. Так, например, бруски невозможного треугольника в четырех измерениях будут соединены под прямыми углами. И эта фигура будет выглядеть так со всех точек обзора, и не будет искажаться в отличие от реализаций невозможного треугольника в трехмерном пространстве (см. «Невозможные фигуры в реальном мире»).

Статья составлена по материалам Wikipedia

Стукнула тут меня мысль нарисовать куб в десятом измерении. Ну точнее проекцию на двухмерный экран. Думал думал думал… Ну теперь когда придумал, все кажется таким простым, но тем не менее думал я напряжно. Да и тему сначала понять надо было.

В общем что такое куб в четвертом измерении.. Будем рассматривать через проекцию на третье.

Начнем с точки. Точка вытягивается в линию Это первое измерение. Линия расползается в квадрат, второе.

Квадрат раздваивается и расходится образуя куб.

А далее таким же методом вытягиваем куб из куба, и соединяем соответствующие точки.

Вот пример каждая точка красного куба соединена с соответствующей точкой синего.

Тессеракт

4.jpg

Далее идет пятое (тут я уже не стал возиться с обводкой)

Пентеракт

5.png

Хексеракт

6.png

Хептеракт

Октеракт

Энтенеракт

И десятимерный куб

Можно конечно и большие размерности и размеры (у меня тут файл 5000х5000 11мерный куб. вес правда всего 3 метра с небольшим) Но это уже если объявится желающий.

Да вот иногда я пишу подобную белеберду вместо кнопок бабло 🙂

Еще по теме:Стереокартинки. Гиперкубы. Стерео-Гиперкубы.

UPD. Обязательно посетите запись в которой все это дело анимированно!

UPD2. Метод построения гиперкубов любых измерений

Автор: Elsper.ruVN:F [1.9.14_1148]Тессеракт и прочие гиперкубы.,

s33465727.jpgУчения о многомерных пространствах начали появляться в середине XIX века. Идею четырехмерного пространства у ученых позаимствовали фантасты. В своих произведениях они поведали миру об удивительных чудесах четвертого измерения.

Герои их произведений, используя свойства четырехмерного пространства, могли съесть содержимое яйца, не повредив скорлупы, выпить напиток, не вскрывая пробку бутылки. Похитители извлекали сокровища из сейфа через четвертое измерение. Хирурги выполняли операции над внутренними органами, не разрезая ткани тела пациента.

Тессеракт

В геометрии гиперкуб — это n-мерная аналогия квадрата (п = 2) и куба (п = 3). Четырёхмерный аналог обычного нашего 3-мерного куба известен под названием тессеракт (tesseract). Тессеракт относится к кубу, как куб относится к квадрату. Более формально, тессеракт может быть описан как правильный выпуклый четырехмерный многогранник, чья граница состоит из восьми кубических ячеек.

Каждая пара непараллельных трёхмерных граней пересекается, образуя двумерные грани (квадраты), и так далее. Окончательно, тессеракт обладает 8 трёхмерными гранями, 24 двумерными, 32 рёбрами и 16 вершинами.

Кстати согласно Оксфордскому словарю, слово tesseract было придумано и начало использоваться в 1888 Чарльзом Говардом Хинтоном (1853—1907) в его книге «Новая эра мысли». Позже некоторые люди назвали ту же самую фигуру тетракубом (греч. тетра — четыре) — четырёхмерным кубом.

s56580011.jpg

Попытаемся представить себе, как будет выглядеть гиперкуб, не выходя из трёхмерного пространства.

В одномерном «пространстве» — на линии — выделим отрезок АВ длиной L. На двумерной плоскости на расстоянии L от АВ нарисуем параллельный ему отрезок DC и соединим их концы. Получится квадрат CDBA. Повторив эту операцию с плоскостью, получим трёхмерный куб CDBAGHFE. А сдвинув куб в четвёртом измерении (перпендикулярно первым трём) на расстояние L, мы получим гиперкуб CDBAGHFEKLJIOPNM.

Аналогичным образом можно продолжить рассуждения для гиперкубов большего числа измерений, но гораздо интереснее посмотреть, как для нас, жителей трёхмерного пространства, будет выглядеть четырёхмерный гиперкуб.

Возьмём проволочный куб ABCDHEFG и поглядим на него одним глазом со стороны грани. Мы увидим и можем нарисовать на плоскости два квадрата (ближнюю и дальнюю его грани), соединённые четырьмя линиями — боковыми рёбрами. Аналогичным образом четырёхмерный гиперкуб в пространстве трёх измерений будет выглядеть как два кубических «ящика», вставленных друг в друга и соединённых восемью рёбрами. При этом сами «ящики» — трёхмерные грани — будут проецироваться на «наше» пространство, а линии, их соединяющие, протянутся в направлении четвёртой оси. Можно попытаться также представить себе куб не в проекции, а в пространственном изображении.

s49461087.jpg

Подобно тому, как трёхмерный куб образуется квадратом, сдвинутым на длину грани, куб, сдвинутый в четвёртое измерение, сформирует гиперкуб. Его ограничивают восемь кубов, которые в перспективе будут выглядеть как некая довольно сложная фигура. Сам же четырёхмерный гиперкуб можно разбить на бесконечное количество кубов, подобно тому, как трёхмерный куб можно «нарезать» на бесконечное количество плоских квадратов.

Разрезав шесть граней трёхмерного куба, можно разложить его в плоскую фигуру — развёртку. Она будет иметь по квадрату с каждой стороны исходной грани плюс ещё один — грань, ей противоположную. А трёхмерная развёртка четырёхмерного гиперкуба будет состоять из исходного куба, шести кубов, «вырастающих» из него, плюс ещё одного — конечной «гиперграни».

s41829117.jpg

Гиперкуб в искусстве

Тессеракт настолько интересная фигура, что неоднократно привлекал внимание писателей и кинематографистов.

Роберт Э. Хайнлайн несколько раз упоминал гиперкубы. В «Доме, который построил Тил», (1940) он описал дом, построенный как развёртка тессеракта, а затем вследствие землетрясения «сложившийся» в четвёртом измерении и ставший «реальным» тессерактом. В романе «Дорога славы» Хайнлайна описана гиперразмерная шкатулка, которая была изнутри больше, чем снаружи.

Рассказ Генри Каттнера «Все тенали бороговы» описывает развивающую игрушку для детей из далёкого будущего, по строению похожую на тессеракт.

Сюжет фильма «Куб 2: Гиперкуб» сосредотачивается на восьми незнакомцах, пойманных в ловушку в «гиперкубе», или сети связанных кубов.

Параллельный мир

Математические абстракции вызвали к жизни представление о существовании параллельных миров. Под таковыми понимаются реальности, которые существуют одновременно с нашей, но независимо от неё. Параллельный мир может иметь различные размеры: от небольшой географической области до целой вселенной. В параллельном мире события происходят по-своему, он может отличаться от нашего мира, как в отдельных деталях, так и практически во всём. При этом физические законы параллельного мира не обязательно аналогичны законам нашей Вселенной.

Эта тема — благодатная почва для писателей-фантастов.

Н картине Сальвадора Дали «Распятие на кресте» изображен тессеракт. «Распятие или Гиперкубическое тело», — картина испанского художника Сальвадора Дали, написанная в 1954 году. Изображает распятого Иисуса Христа на развертке тессеракта. Картина хранится в Музее Метрополитен в Нью-Йорке

s00987977.jpg

Всё началось в 1895 году, когда Герберт Уэллс рассказом «Дверь в стене» открыл для фантастики существование параллельных миров. В 1923 году Уэллс вернулся к идее параллельных миров и поместил в один из них утопическую страну, куда отправляются персонажи романа «Люди как боги».

 Роман не остался незамеченным. В 1926 году появился рассказ Г. Дента «Император страны „Если»». В рассказе Дента впервые возникла идея о том, что могут существовать страны (миры), история которых могла пойти не так, как история реальных стран в нашем мире. И миры эти не менее реальны, чем наш.

В 1944 году Хорхе Луис Борхес опубликовал в своей книге «Вымышленные истории» рассказ «Сад расходящихся тропок». Здесь идея ветвления времени была, наконец, выражена с предельной ясностью.

Несмотря на появление перечисленных выше произведений, идея многомирия начала серьёзно развиваться в научной фантастике лишь в конце сороковых годов XX века, примерно тогда же, когда аналогичная идея возникла в физике.

Одним из пионеров нового направления в фантастике был Джон Биксби, предположивший в рассказе «Улица одностороннего движения» (1954), что между мирами можно двигаться лишь в одну сторону — отправившись из своего мира в параллельный, вы уже не вернетесь назад, но так и будете переходить из одного мира в следующий. Впрочем, возвращение в свой мир также не исключается — для этого необходимо, чтобы система миров была замкнута.

В романе Клиффорда Саймака «Кольцо вокруг Солнца» (1982) описаны многочисленные планеты Земля, существующие каждая в своём мире, но на одной и той же орбите, и отличаются эти миры и эти планеты друг от друга лишь незначительным (на микросекунду) сдвигом во времени. Многочисленные Земли, которые посещает герой романа, образуют единую систему миров.

Любопытный взгляд на ветвление миров высказал Альфред Бестер в рассказе «Человек, который убил Магомета» (1958). «Меняя прошлое, — утверждал герой рассказа, — меняешь его только для себя». Иными словами, после изменения прошлого возникает ответвление истории, в котором лишь для персонажа, совершившего изменение, это изменение и существует.

В повести братьев Стругацких «Понедельник начинается в субботу» (1962) описаны путешествия персонажей в разные варианты описываемого фантастами будущего — в отличие от уже существовавших в фантастике путешествий в различные варианты прошлого.

Впрочем, даже простое перечисление всех произведений, в которых затрагивается тема параллельности миров, заняло бы слишком много времени. И хотя фантасты, как правило, научно не обосновывают постулат о многомерности, в одном они правы — это гипотеза, которая имеет право на существование.

Четвертое измерение тессеракта все еще ждет нас в гости.

Виктор Савинов

Используемые источники:

  • https://im-possible.info/russian/articles/hypercube/
  • http://elsper.ru/2009/10/tesserakt-i-prochie-giperkuby/
  • https://nlo-mir.ru/paramamir/21310-kiberkub-pervyj-shag-v-chetvertoe-izmerenie.html

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации