Контроллер заряда – встроенная схема защиты в аккумуляторе, которая предотвращает его сильную разрядку или перезарядку, контролирует силу тока и температуру, задает время окончания заряда. Как работает контроллер заряда в li-ion аккумуляторе, для чего он нужен?
Устройство li-ion аккумулятора 18650
Контроллер зарядки литий-ионного аккумулятора производят корпорации: Sony, LG, Sanyo, Panasonic, Samsung, ATL, HYB. Остальные производители перекупают элементы и выдают за собственный продукт.
Максимальная емкость ионных аккумуляторов 18650 – 3600 мА-ч.; они, в отличие от батарей, могут многократно перезаряжаться. Цифра 18650 – форм-фактор, указывающий на длину аккумулятора (65 мм) и его диаметр (18 мм).
Основные характеристики литий-ионного аккумулятора 18650:
- максимально допустимое напряжение – 4,2 В (небольшие перезарядки губительно сказываются на сроке службы);
- минимально допустимое напряжение – 2,75 В (при понижении до 2 В заряд не подлежит восстановлению);
- измерение емкости в ампер-часах – полная зарядка выдает 1 А тока в течение 60 минут, 2 А тока – 30 минут, 15 А тока – 4 минуты.
Литий-ионный АКБ преобразовывает химическую энергию в электрическую, поэтому возникает ток, приводящий в действие то или иное устройство. Такие батарейки оснащаются специальной защитной схемой, которая контролирует уровень ее нагрева и циклы работы. При перегреве и спаде напряжения до 2,7 В – контроллер автоматически прекращает работу АКБ.
Li-ion батарейки очень взрывоопасны, поэтому в них встроены защитные платы. Глубокий разряд таких батарей наступает через 2–3 года их неиспользования, после чего восстанавливаются они проблематично и не отличаются долгим сроком службы.
Предназначение контроллера зарядки
Контроллер регулирует процесс заряда и разрядки аккумулятора. Если напряжение падает ниже 3 В, защита отключает банку от потребителя тока: устройство выключается. Также защитная схема предотвращает короткие замыкания. Некоторые виды защитных плат имеют терморезистор, который защищает элементы АКБ от перегрева.
Все платы осуществляют контроль за:
- переразрядом батарейки;
- перезарядом;
- током нагрузки;
- температурой.
Имея под рукой защитную плату, можно переделать старые АКБ шуруповерта, дрели на литиевые батареи, отличающиеся долгим сроком службы.
Особенности контроллера для зарядки li-ion аккумулятора 18650
Контроллер для литиевых аккумуляторов 18650 расположен сверху корпуса, чем удлиняет само устройство. Плата расположена впереди отрицательной клеммы, защищая АКБ от перезарядки/переразрядки. Основная страна-производитель – Китай.
Предназначение контролера зарядки
Как только защита будет установлена, корпус помещают в специальную пленку с термоусадкой. Из-за дополнительной защитной конструкции корпус удлиняется и утолщается, в редких случаях – не помещается в гнездо. В случае применения аккумулятора 18650 для создания тока в 12 В с общим контроллером заряда прерыватели не устанавливаются.
Основная функция такой защиты – сохранение работы источника энергии в установленных параметрах.
Виды контроллеров
Контроллеры для li-ion аккумуляторов отличаются ценой, производителем и внутренними элементами.
Самые популярные:
- HX-3S-A02 (цена – 150 рублей). Производитель – Китай, внутри чип S-8254AA, который защищает литий-ионные элементы от сильного заряда/разряда, короткого замыкания. К нему можно подключить три АКБ типа 18650 (максимальный ток – 10 А). Размер защиты – 50х16 мм.
- FDC-2S-2 (цена – 50 рублей). Производитель – Китай, чип – HY2120, предотвращает сильный заряд/разряд, короткие замыкания. Возможно подключение двух АКБ типа 18650 (максимальный ток – 3А). Параметры защиты – 36х6х1 мм.
- HX-2S-01 (цена – 70 рублей). Производство – Китай, чип – HY2120, уберегает от сильного заряда/разряда, короткого замыкания. Подключаются две АКБ типа 18650 (максимальный ток – 3 А). Размер защиты – 36х6х1 мм.
- HX-3S-D01(цена – 220 рублей). Производство – Китай, чип S-8254AA, контролирует сильный заряд/разряд, короткое замыкание. К нему можно подсоединить три АКБ типа 18650 (максимальный ток – 20 А). Размер защитной платы – 51х23 мм.
- HX-3S-D02 (цена – 200 рублей). Производитель – Китай, внутри чип S-8254AA, защищает от сильного заряда/разряда, короткого замыкания. К нему подключаются три АКБ типа 18650 (максимальный ток – 10 А). Размер схемы – 50х16 мм.
- HX-4S-A01 (цена – 250 рублей). Производитель – Китай, внутри чип S-8254AA, защищает от сильного заряда/разряда, короткого замыкания. Можно подсоединить четыре АКБ типа 18650 (максимальный ток – 6 А). Размер микросхемы – 67х16мм.
Схемы контроллеров
Ошибочно думать, что контроллеры заряда-разряда существуют: разрядом управлять не нужно, ток находится в прямой зависимости от нагрузки. Главное – это контроль за напряжением и температурой, временем завершения заряда. Под таким контроллером подразумевают плату, защищающую АКБ от глубокой зарядки/разрядки.
Схема контроллера литий-ионного аккумулятора
Микросхемы состоят из различных электронных элементов, поэтому имеют вариации:
- DW01-Plus. Самая популярная и простая микросхема, находится под самоклейкой с надписями, которой обернут аккумулятор. Плата шестиногая, полевые транзисторы соединены в один корпус восьминогой сборкой. Сопротивление транзисторов создает измерительный шунт: возникает большой порог срабатывания от одного устройства к другому. В полевики встроены паразитные светодиоды, благодаря которым АКБ заряжается даже при срабатывании защиты от глубокой разрядки.
- S-8241 Series. Разработчик микросхемы – фирма SEIKO, специализирующаяся на литий-ионных и литий-полимерных аккумуляторах. Защитные ключи срабатывают при 2,3 и 4,35 вольтах и при спаде напряжения на FET1-FET2 до 200 мВ.
- LV5114OT. Защитная плата срабатывает при 2,5 и 4,25 вольтах, что предотвращает переразряд/перезаряд.
- R5421N Series. Среднее потребление энергии в рабочем состоянии – 3 мкА, в состоянии покоя – 0,3 мкА. Данная микросхема имеет ряд модификаций, которые разнятся величиной напряжения срабатывания при перезаряде.
Причины блокировки контроллером li-ion аккумулятора 18650
Главная причина – возникновение короткого замыкания из-за превышения предельно допустимого напряжения тока внутри АКБ. Микросхема разрывает электрическую цепь. Для разблокировки батареи достаточно зарядить ее.
Вторая причина – глубокий разряд аккумулятора. При глубоком некритичном разряде батарейку можно разблокировать с помощью зарядного устройства.
При разряжении до критичного состояния устройство не включится: внутренние химические процессы приводят к образованию металлических литиевых кристаллов, которые создают опасный контакт между положительным и отрицательным полюсами, приводящий к взрыву.
Балансировочная плата для li-ion аккумулятора 18650
Какую функцию выполняет балансир в литийных аккумуляторах? Если последовательно соединять несколько банок, их напряжение складывается в общую сумму, а емкость батареи равняется самой низкой из всех элементов.
Чтобы предотвратить перезаряд самой «ленивой» части, ее отключают от питания, что позволяет оставшимся частям продолжать заряжаться. Балансир контролирует равномерно распределяющийся заряд, поэтому его включают в цепи с последовательным соединением элементов. При параллельном соединении в балансировке нет необходимости: здесь равномерное распределение заряда. Балансировочная плата обычно входит в общий защитный корпус MBS и носит название «балансировочный шлейф».
Лучшие аккумуляторы 18650 на «Алиэкспресс»
На ресурсе «Алиэкспресс» можно купить разные li-ion АКБ, отличающиеся ценой и производителем. Из-за большого спроса на товар велико число подделок. Качественная модель отличается от подделки рядом признаков. Так, продукция высокого качества имеет емкость в 3600 А/ч и стоит гораздо дороже, среднего качества – 3000–3200 А/ч и стоит в несколько раз дешевле.
Важно! АКБ с защитой длиннее стандартной модели на 3–4 мм и толще на 1–2 мм.
Как восстановить Li-ion АКБ
При полном выходе из строя батареи лучшее решение – утилизация, в ситуации крайней необходимости ее можно реанимировать различными способами:
- Помещение АКБ в морозильник: резкая смена температуры в ряде случаев приводит к его временному запуску. В морозильной камере необходимо держать ее в течение 40–50 минут, после чего извлечь и незамедлительно подключить к зарядному устройству на 5 минут. Подождать разогрева батарейки до комнатной температуры и полностью зарядить.
- Вскрытие АКБ и отсоединение защитной микросхемы. Процедура проводится крайне осторожно. Для начала необходимо измерить тестером напряжение на контактах (дальнейшие действия возможны только при нулевом показателе), отсоединить защитную плату, замерить показатели напряжения. Дальше подключить зарядное устройство к аккумулятору на 10–15 минут, установив такие показатели: 100 мА, 4,2 В. При перегреве батареи зарядку следует отсоединить. Как только она полностью зарядится, защитная схема возвращается на место.
Перед разбором посмотрите на дату выпуска li-ion аккумулятора. Если ему больше 3–4 лет, не стоит пытаться реанимировать его.
Итак, контроллер для литий-ионных батарей выполняет важную функцию – не позволяет напряжению вырасти до 4,2 В и понизиться до 2,75 В (оптимальное напряжение для АКБ на литии – 3,7 вольта). Сильная разрядка и повышенная зарядка приводят к выходу устройства из строя.
Устройство и принцип работы защитного контроллера Li-ion/polymer аккумулятора
Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить, что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC.
Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально, как устроена схема защиты, и из каких элементов она состоит.
Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки («банки») на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная – сборка двух MOSFET-транзисторов.
На фото показана плата контроллера заряда от аккумулятора на 3,7V.
Микросхема с маркировкой DW01-P в небольшом корпусе – это по сути «мозг» контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 — ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 — это MOSFET-транзисторы.
Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.
Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.
Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.
Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.
Тот транзистор (FET1), что подключен к выводу OD (Overdischarge) микросхемы DW01-P, контролирует разряд аккумулятора – подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge) – подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.
Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты вцелом.
Защита от перезаряда (Overcharge Protection).
Как известно, перезаряд литиевого аккумулятора свыше 4,2 – 4,3V чреват перегревом и даже взрывом.
Если напряжение на ячейке достигнет 4,2 – 4,3V (Overcharge Protection Voltage — VOCP), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора. Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 – 4,1V (Overcharge Release Voltage – VOCR) из-за саморазряда. Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.
Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.
Защита от переразряда (Overdischarge Protection).
Если напряжение на аккумуляторе падает ниже 2,3 – 2,5V (Overdischarge Protection Voltage — VODP), то контроллер выключает MOSFET-транзистор разряда FET1 – он подключен к выводу DO.
Далее микросхема управления DW01-P перейдёт в режим сна (Power Down) и потребляет ток всего 0,1 мкА. (при напряжении питания 2V).
Тут есть весьма интересное условие. Пока напряжение на ячейке аккумулятора не превысить 2,9 – 3,1V (Overdischarge Release Voltage — VODR), нагрузка будет полностью отключена. На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за «смерть» аккумулятора. Вот лишь маленький пример.
Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер — G2NK (серия S-8261), сборка полевых транзисторов — KC3J1.
Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.
При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.
Чтобы контроллер вновь подключил аккумулятор к «внешнему миру», то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 – 3,1V (VODR).
Тут возникает весьма резонный вопрос.
По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи, когда срабатывает защита от переразряда? Как нам снова подзарядить «банку» аккумулятора, чтобы контроллер опять включил транзистор разряда — FET1?
Дело в том, что внутри полевых транзисторов есть так называемые паразитные диоды – они являются результатом технологического процесса изготовления MOSFET-транзисторов. Вот именно через такой паразитный (внутренний) диод транзистора FET1 и будет течь ток заряда, так как он будет включен в прямом направлении.
Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе DW01-P, G2NK), то можно узнать, что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда — Charger Detection. То есть при подключении зарядного устройства схема определит, что зарядник подключен и разрешит процесс заряда.
Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время — несколько часов.
Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6. О том, как это сделать, я уже рассказывал здесь.
Именно этим методом мне удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это более 9 часов! Вот столько может длиться «восстановительная» зарядка.
Кроме всего прочего, в функционал микросхем защиты литиевых акумуляторов входит защита от перегрузки по току (Overcurrent Protection) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
-
Самовосстанавливающийся предохранитель.
-
Электронный трансформатор.
-
Ионистор.
toozpickЭлектроника / Блоки питанияДобавлено 6 комментариев
Приветствую, Самоделкины!Если вы являетесь радиолюбителем, то наверняка пробовали собрать powerbank своими руками, хотя бы для спортивного интереса. Но в большей степени люди делают пауэрбанки своими руками по той причине, что заводские портативные зарядки им чем-то не устраивают. Взять хотя бы то, что ток зарядки таких powerbank’ов редко превышает значению в 1А (здесь имеется ввиду то, каким током заряжается сам powerbank, а не о выходном токе, которым он (powerbank) заряжает ваши гаджеты). Так вот, 1А — это мало и, допустим, если емкость powerbankа внушительна и составляет, к примеру, 20 000 мАч, то таким током он будет заряжаться около 20 часов и более, что уж говорить про пауэрбанки с более высокой емкостью.Платы заряда для одной банки литий-ионного аккумулятора на базе микросхемы TP4056 знакомы всем.Они могут заряжать литиевый аккумулятор током до 1А. Китайцы сейчас продают и 3-ех амперные версии таких плат.Так вот, автор сегодняшней самоделки (AKA KASYAN), решил скрестить 9 микросхем TP4056. Это даст возможность заряжать литиевые аккумуляторы током до 8-9А. Зачем это нужно? Ну, во-первых, такая плата будет весьма кстати, если вы решили собрать свой powerbank большой емкости, а во-вторых, сейчас в продаже встречаются мощные литий-ионные банки с емкостью 80,100 и более ампер часов и для них нужны мощные системы заряда. Как мы знаем, есть много вариантов зарядки мощных литиевых банок, но самым дешевым из них остается как раз таки микросхема TP4056. Каждая микросхема на 1А. Соединяйте по этому принципу сколько угодно микросхем, этим получая зарядное устройство на любой нужный ток.Фишка микросхемы TP4056 заключается в том, что она заряжает аккумулятор правильным методом, то есть стабильным током и напряжением. Как только напряжение на аккумуляторе доходит до значения 4,16-4,2В, заряд прекращается.Вернемся к нашей схеме. Автору такая зарядка нужна именно для очень емкого пауэрбанка, его попросил сделать один знакомый, который занимается туризмом и водит людей в дальние походы, но это уже другая история.Powerbank планируется на 100 000 мАч и зарядить такой, ясное дело от обычного USB-порта не получится. Точнее получится, если подождать где-то 5 дней, поэтому заряжать сборку из 48-ми литиевых банок стандарта 18650 автор намерен от 5-ти вольтовой шины компьютерного блока питания, он спокойно выдаст токи 10 и более ампер. Насчет печатной платы. Ее, как всегда, вместе с общим архивом проекта можно скачать по ссылке в описании к видеоролику автора (ссылка ИСТОЧНИК в конце статьи) или ЗДЕСЬ. Автор предварительно ее отзеркалил, с вас остается только ее распечатать. На плате имеются перемычки, их довольно много. Лучше использовать smd перемычки (резисторы с нулевым сопротивлением), в данном случае несколько перемычек заменены на резисторы с сопротивлением несколько сот миллиом, так как ничего другого под рукой у автора не было. Микросхемы TP4056 будут греться в зависимости от тока заряда и входного напряжения, они все-таки работают в линейном режиме, и на каждой микросхеме около 1Вт мощности будет уходить в тепло, если входное напряжение составляет 5В. Общее количество микросхем 9 и соответственно 9Вт тепла, это довольно сильный нагрев. Сами микросхемы охлаждаются за счет массивных дорожек, которые обильно залужены. Хотя гораздо лучше было бы использовать двухстороннюю плату, где медное покрытие на второй стороне играло бы роль радиатора, но как говорится — и так сойдёт, позже сделаем тепловые замеры и посмотрим насколько это страшно. По времени автор был сильно ограничен, иначе (по его словам) заказал бы двустороннюю плату без перемычек и с хорошим охлаждением на заводе в Китае.Из-за того, что монтаж односторонний есть несколько нюансов. По силовым дорожкам будут протекать токи около 9-10А и в некоторых местах дорожки довольно тонкие, поэтому токосъем лучше сделать в нескольких местах, затем провода соединить параллельно. Первая микросхема — ведущая, остальные соединены параллельно, сугубо для увеличения общего тока. На плате есть пара светодиодов. Один светится во время зарядки, второй — когда заряд окончен. Ну а теперь наконец испытания. В качестве подопытной батареи у нас сборка из аккумуляторов 18650 с суммарной емкостью честных 18 000 мАч. Автор предварительно разрядил батарею.В качестве источника питания будем использовать 5-вольтовую линию компьютерного блока питания.Подключаем. Процесс пошел, загорелся соответствующий светодиодный индикатор. Ток заряда при этом составляет около 8А и это с учётом потерь на проводах. Ждём минут 20, далее берем тепловизор и видим, что плата в целом довольно сильно нагрелась, притом больше всех нагрелись 2 последние микросхемы, у которых охлаждение не самое лучшее. Температура на них доходит до 83-ех градусов, но это нормально для микросхем TP4056.Спустя где-то пару часов аккумулятор был полностью заряжен, при этом важно заметить, что по мере заряда ток будет падать, а, следовательно, уменьшится и тепловыделение на плате заряда. По завершении процесса загорается второй индикатор, при этом напряжение на аккумуляторах составило 4,18В, а это значит, что собранная схема полностью функционирует и справляется с поставленными задачами, так что возьмите схему на вооружение, когда-то она может пригодиться. В дальнейшем мы рассмотрим схему защиты для такой мощной сборки, а также соберем powerbank целиком и испытаем его. Предстоит также собрать самый важный орган пауэрбанка — мощный повышающий преобразователь, который будет преобразовывать напряжение с литиевых аккумуляторов до 5В, которые нужны для зарядки портативной электроники.Ну а на этом пора заканчивать. Благодарю за внимание. До новых встреч!Видео:Доставка новых самоделок на почтуПолучайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!
*Заполняя форму вы соглашаетесь на обработку персональных данных
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь. Используемые источники:
- https://3batareiki.ru/akkumulyatory/kontroller-zaryada-v-li-ion-akkumulyatore
- https://go-radio.ru/sxema-kontrollera-litiy-ionnogo-akkumulatora.html
- https://usamodelkina.ru/13184-shema-zarjada-dlja-moschnyh-li-ion-akkumuljatorov.html