Андрей Смирнов
Время чтения: ~18 мин.
Просмотров: 7

Программатор Громова. Микроконтроллеры для начинающих

Программатор Громова — это устройство, которое предназначено для считывания информации. На сегодняшний день с его помощью можно записывать данные с различных запоминающих накопителей. Работать программаторы способны на различных платформах. Тип подключения устройства зависит от используемой платы.

К основным элементам программатора можно отнести адаптер и модулятор. По характеристикам они могут довольно сильно отличаться. Тестировать микроконтроллеры при помощи программатора есть возможность. Блоки-редакторы для устройств подходят различные. Их основной задачей является корректировка данных.

Схема простого программатора

Схема программатора включает в себя адаптер саморегулируемого типа. Модулятор чаще всего используется многоканальный. За счет этого форматы устройство способно поддерживать разнообразные. Микросхемы использоваться могут различных конфигураций. Их пропускная способность должна составлять минимум 5 мк. Дополнительно следует учитывать, что в устройстве имеется преобразователь. Ширина пропускания в данном случае зависит от мощности резисторов. Конденсаторов в системе чаще всего используется два. Устанавливаются они, как правило, у модулятора, и играют роль контактного входа.

Как сделать программатор?

Чтобы сделать программатор Громова своими руками, потребуется использовать адаптер, а также модулятор. Для быстрого считывания информации резисторы необходимо подбирать мощные. Нагрузку они должны выдерживать на уровне 4 А. Показатель номинального напряжения в цепи обязан составлять 20 В. Чтобы уменьшить частоту помех, некоторые устанавливают аналоговые конденсаторы. Емкость их зависит от типа используемого модулятора.

Если рассматривать саморегулирующуюся модель, то вышеуказанный параметр обязан находиться на отметке 4 Ом. Для того чтобы запись данных была стабильной, преобразователи подбираются с операционным усилителем. Все это также позволит повысить частоту устройства. В последнюю очередь важно припаять порты для подсоединения программатора к персональному компьютеру.

Модель со встроенным редактором

Для корректировки различных данных на носителях используют именно такой программатор. Инструкция его установки очень проста. Для выполнения стандартных функций устройство необходимо подсоединить к персональному компьютеру. Чтобы использовать его для тестирования микроконтроллеров, потребуется дополнительное гнездо. Порты на таких моделях чаще всего устанавливаются параллельного типа.

Однако встречаются и исключения. Модуляторы используются обычно многоканального типа. В свою очередь, адаптер подходит только средней мощности. Пропускная способность его обязана составлять 3 мк. Все это позволит параметр порогового напряжения держать на уровне 15 А.

Устройства с аналоговыми адаптерами

Простой программатор с аналоговым адаптером позволяет успешно справляться с низкочастотными колебаниями. Использоваться для тестирования микроконтроллеров он может. Также его часто применяют для чтения данных на основе двоичного кода. Модуляторы в таких устройствах используются только инвертирующие. Пропускная способность их в среднем равняется 5 мк. Дополнительно следует отметить, что напряжение они способны выдерживать примерно 4 В. К недостаткам таких устройств следует отнести малый параметр напряжения. Связано это с резким повышением частоты прибора на входе.

Функции современных программаторов

Современные программаторы отличаются высокой мощностью. Обрабатывать они способны двоичный код довольно просто. Также следует отметить, что платформы для них используются разнообразные. Некоторые модели специально созданы для записи данных. В данном случае функция обработки информации у них находится на втором месте. Если говорить про тестирование, то все программаторы могут использоваться для этого. Модели с операционными усилителями способны работать с программами, у которых предусмотрено расширение DDS.

Микроконтроллеры с плоским диффузом

Микроконтроллеры для начинающих данного типа отличаются повышенной полосой пропускания. При этом вводная частота в устройстве может достигать 33 Гц. Используются такие модели для чтения данных с различных носителей. Подсоединение микроконтроллера осуществляется через линейные порты. Еще одна особенность таких устройств заключается в использовании низкочастотных адаптеров.

Все это позволяет быстро считывать данные. К недостаткам можно отнести большую амплитуду колебаний. В связи с этим для некоторых платформ данные устройства не подходят. Дополнительно следует упомянуть, что резисторы в них используются только кассетного типа. Параметр отрицательного сопротивления в данном случае зависит от емкости конденсаторов.

Модели с двоичным кодом

Программатор Громова данного типа способен похвастаться высоким параметром порогового напряжения. Если рассматривать модели с аналоговыми адаптерами, то этот показатель доходит до 15 В. В свою очередь, саморегулируемые элементы устанавливаются довольно редко. Для повышения показателя чувствительности некоторые применяют многоканальные модуляторы.

Для пятиэлектродных усилителей они подходят идеально. Чтобы отрицательное сопротивление в цепи поддерживать на отметке в 4 Ом, некоторые специалисты используют в устройствах модельные резисторы. В свою очередь конденсаторы применяются, исходя из параметра номинальной частоты. Подключение программатора осуществляется через USB-порт.

Цифро-аналоговые микроконтроллеры

Данные микроконтроллеры для начинающих на сегодняшний день активно используются для чтения программ с расширением DDS. Порты в этом случае устанавливаются линейного типа. Модуляторы по параметрам довольно сильно отличаются. Если подбирать устройства на 5 Гц, то микросхема устанавливается многоканального типа. Для соединения портов применяется коаксиальный кабель, который отличается хорошей пропускной способностью. Параметр порогового напряжения в таких устройствах достигает 30 В.

Адаптеры чаще всего используются полупроводниковые. Для усиления инвертации они подходят хорошо. Однако следует учитывать, что с низкочастотными колебаниями они справляются довольно плохо. Таким образом, чтение информации на некоторых платформах может быть затруднительным. Отрицательное сопротивление в таких устройствах обычно колеблете в районе 4 Ом. Нагрузку микроконтроллер обязан выдерживать в таком случае на уровне 6 А. Операционные усилители для программаторов данного типа используются довольно редко.

Двухпроводные программаторы

Программатор Громова данного типа работает на базе импульсного адаптера. Модуляторы в устройствах используются различные. Пропускная способность их должна составлять минимум 4 мк. При этом параметр отрицательного сопротивления в среднем находится на уровне 5 Ом. Резисторы чаще всего используются широкополосные. За счет этого номинальное напряжение устройства способны выдерживать 30 В. Для тестирования микроконтроллеров такие приборы подходят плохо. Однако для записи они используются довольно часто.

Также следует отметить, что они хорошо подходят для большинства платформ. Электромагнитные колебания, как правило, в системе возникаю малые. Выходные триоды на программатор Громова устанавливаются редко. Однако для стабильной работы часто специалистами применяются пятиэлектродные усилители. За счет них удается повысить параметр проводимости сигнала до нужного уровня.

Использование векторных резисторов

Векторные резисторы на программатор Громова устанавливаются довольно часто. Параметр пропускной способности у них колеблется в районе 5 мк. За счет этого считывание данных с жестких дисков происходит довольно быстро. Для тестирования микроконтроллеров программаторы на вышеуказанных резисторах применяться могут.

Также следует отметить, что модуляторы в данном случае устанавливаются мультисистемные. Параметр порогового напряжения у них достигает 5 В. Степень искажения у представленных устройств незначительная. Чтобы уменьшить амплитуду колебаний, дополнительно в некоторых моделях установлены емкостные конденсаторы. Порты для таких устройств используются разнообразные.

Использование стрикционных преобразователей

Стрикционные преобразователи в программаторах встречаются довольно редко. Связано это с тем, что пропускная способность у них малая. Также они в значительной степени затормаживают процесс перекрытия сигнала. В данном случае приходится использовать различные усилители. На основных платформах такие устройства работать способны. Резисторы для преобразователей подбираются вспомогательного типа. Напряжение они максимум обязаны выдерживать в 4 В.

За счет этого параметр отрицательного сопротивления в цепи может достигать 6 Ом. Модуляторы для преобразователей подбираются разных типов. В данном случае многое зависит от производителя. Если рассматривать модели для тестирования микроконтроллеров, то модуляторы чаще всего используются диодные. Параметр проходимости сигнала у них доходит в среднем до 5 мк.

Программаторы на микросхеме РР202

Программатор для прошивки данного типа является довольно распространенным. Модуляторы для таких устройств подходят только импульсного типа. В свою очередь, адаптеры можно подбирать разные. В данной ситуации важно добиться высокой стабильности устройства. Резисторы чаще всего устанавливаются высокоомные. За счет этого чувствительность устройства значительно повышается.

При этом параметр проводимости сигнала зависит от типа конденсаторов. В некоторых моделях они используются аналогового типа. За счет этого параметр порогового напряжения удается поддерживать в системе на уровне 30 В. Однако показатель отрицательного сопротивления зависит от скорости обработки данных.

Модели на микросхеме РР300

Универсальный программатор данного типа способен работать на платформах SSW. За счет этого на сегодняшний день он пользуется большим спросом. Преобразователи в нем используются довольно редко. Однако исключения все же бывают. Особой стабильностью такие модели не выделяются. В среднем параметр отрицательного сопротивления у приборов составляет 3 Ом.

Все это говорит о том, что процесс обработки данных происходит довольно быстро. Резисторы чаще всего используются с операционными усилителями. Все это необходимо для повышения полосы пропускания. Минимум этот параметр в устройствах составляет 4 мк.

Устройства с последовательным портом

Первый универсальный программатор с последовательным портом был изготовлен не так давно. Проблема его заключается в слабой чувствительности. За счет этого электромагнитные колебания в сети бывают довольно значительные. Все это в конечном счете отображается на качестве чтения данных с носителей. На сегодняшний день эта проблема была решена производителями за счет усиления пропускной способности.

Резисторы в устройствах обычно устанавливаются вакуумного типа. Для повышения промежуточной частоты используются коммутируемые конденсаторы. Параметр отрицательного сопротивления в системе зависит от мощности модулятора. Если рассматривать многоканальные аналоги, то у них вышеуказанный параметр способен доходить до 3 Ом. В таком случае операционные усилители использовать не обязательно.

Похожие статьи

Первый вопрос, который вы хотите задать в лоб – что же вообще такое “программатор”? Слово “программатор” образуется как ни странно, от слова “программа”. А что такое программа? Если вспомнить, что такое телепрограмма и зачем она  была нужна (кстати, сейчас до сих пор продается в киосках), то стает понятно, что программа телепередач – это расписание по времени этих самых телепередач. Значит программой можно назвать какие-то действия или события, которые будут выполняться одно за другим во времени, когда мы этого захотим или не захотим.  Следовательно, программатор – это всего-навсего какое-то устройство, которые позволяет нам записывать либо читать программу. Изменить программу уже может только сам программист 😉

СМ 

Начинающим радиолюбителям переход от сборки простейших аналоговых устройств, типа мультивибраторов, к сборке устройств с применением МК бывает затруднен тем, что здесь мало просто развести и спаять устройство на печатной плате,  нужно еще и залить прошивку в память микроконтроллера с помощью программатора. Как уже было написано в предыдущих статьях, микроконтроллер, до тех пор, пока мы не “залили” в него прошивку, является просто бесполезным куском кремния. И тогда начинающий радиолюбитель ищет информацию в интернете о сборке простого, но эффективного программатора, который помог бы ему взять быстрый старт в этом нелегком деле.

201567164628_attiny_2313apu_medium.jpg.png

Я не ошибусь, если скажу, что 80% новичков, если у них на компьютере есть в наличии СОМ порт, собирают в качестве первого программатора Программатор Громова. Эта схема, при своей простоте и умелом обращении, настоящий шедевр). Действительно, ведь для того, чтобы собрать своими руками программатор, подключаемый к USB порту и имеющий в своем составе микроконтроллер AVR, который требуется предварительно запрограммировать, нужен опять таки программатор. А где взять новичку программатор, пусть и для подобной разовой прошивки ? Получается парадокс курицы и яйца), чтобы собрать USB программатор, нам необходимо сначала запрограммировать микроконтроллер программатора))).

Итак, давайте разберем, что же такое вообще прошивание микроконтроллера (МК) с помощью программатора, и как оно осуществляется? Для того, чтобы прошить МК, нам потребуется связка из самого программатора, устройства, спаянного на печатной плате, и программа, называемая оболочкой, работающая с этим устройством.

Программатор Громова

Под каждый тип программатора чаще всего требуется своя программная оболочка. Для сборки программатора Громова не требуется программировать микроконтроллер. В данном программаторе он отсутствует. Этот программатор работает с двумя широко распространенными оболочками для прошивания: PonyProg и Uniprof.  У нас будут посвящены отдельные обзоры на эти программки. Данный программатор подключается к СОМ порту.  Единственным препятствием для его сборки может стать физическое отсутствие данного разъема на материнской плате вашего системного блока. Почему именно системного блока? Потому что ноутбуки, а также современные модели материнских плат 2010 – 2011 года выпуска и выше часто имеют на контактах СОМ порта пониженное напряжение питания. Что это означает? Это означает, что вы можете собрать данный программатор, а он у вас не заработает. Но с компьютерами  2007 – 2008 года выпуска и старше, за исключением ноутбуков, данный программатор должен гарантированно работать.  Подключение через переходники USB – COM не спасают в этом случае, так как при этом наблюдается в лучшем случае, сильное снижение скорости, в худшем, программатор вообще отказывается работать.

Давайте рассмотрим принципиальную схему программатора:

shema.jpg

Что же мы видим на этой схеме ? Разъем СОМ порта, по другому называемый DB9, 7 резисторов одинакового номинала сопротивлением в 1 кОм и мощностью 0.25 Ватт и 3 импульсных диода. Из диодов подойдут, либо отечественные, КД522, КД510, либо импортные 1N4148.

Давайте разберем, как выглядят данные радиодетали.

На фото ниже представлен разъем DB9:

Фото разъем DB9.jpg

Как мы видим, пины (выводы) этого разъема обозначены цифрами на нем. Если будут какие-то затруднения с определением какой штырек соответствует какому отверстию разъема, рекомендую вставить проволочку в отверстие пина разъема, перевести мультиметр в режим звуковой прозвонки и прикоснувшись одновременно щупами мультиметра к проволочке по очереди к каждому из штырьков на разъеме, вызвонить соответствие штырьков отверстиям. Это может потребоваться в случае, если вы подключаете разъем проводками к плате. Если разъем будет впаян непосредственно в плату, то эти действия не требуются.

У кого на панели разъемов материнской платы, находящейся в задней части компьютера, нет COM разъема, можно купить планки с таким разъемом. Но нужно убедиться что производители распаяли контроллер СОМ порта на материнской плате, и предусмотрели подключение шлейфа данной планки, непосредственно к плате. Иначе такой вариант вам не поможет. В качестве альтернативного варианта, могу предложить приобрести контроллер СОМ порта, размещенный на специальной плате расширения, которую устанавливают в PCI слот ПК

Также при желании, если вы захотите, чтобы кабель, подключаемый к СОМ порту, у вас отключался от программатора, можно открутив винты крепления, снять разъем с планки, и закрепить его в корпусе программатора. Но будьте внимательны, и после покупки прозвоните все жилы, на соответствие номерам, с обоих концов кабеля, потому что часто в продаже встречаются похожие внешне кабеля, имеющие перекрещенные жилы. Кабель для подключения к данному разъему, должен быть обязательно полной распайки, DB9F – DB9F, прямой, не перекрещенный, с другими кабелями разъем работать не будет.

Если же возникают проблемы с приобретением данного кабеля, можно взять и перекрещенный кабель или удлинитель 9M-9F, но в таком случае может потребоваться обрезать разъем с другого конца, и вызвонив жилки по пинам разъема подпаяться непосредственно к плате программатора. У меня, кстати, был как раз такой кабель – удлинитель, и мне пришлось обрезать разъем со второго конца. Не покупайте кабеля для прошивки телефонов через СОМ порт, они не годятся для наших целей, так как там неполная распайка жил.

Идем дальше.

Диоды берем КД522, КД510 или 1N4148. Вот так выглядит диод КД522

Будьте внимательны, диод имеет полярность включения. Другими словами, его не безразлично как впаивать, можно впаять и задом наперед, тогда программатор работать не будет. Как известно, диод имеет катод и анод. Катод промаркирован, в данном случае, черным колечком.

Ну с резисторами, я думаю, проблем не возникнет. Идете в радиомагазин и говорите продавцу: “Мне нужны резисторы 1 кОм 0.25 Ватт”.  Желательно взять импортные резисторы,  так как у отечественных МЛТ идет большее отклонение от номинала.

Если вы владеете методом ЛУТ, то для вас не составит труда собрать программатор, по этой печатной плате. Ниже приведен скрин платы из программы Sprint Layout:

Если же вы до сих пор не освоили метод ЛУТ, тогда вам больше подойдет следующая плата, рисунок которой можно легко нарисовать маркером для печатных плат прямо на текстолите. Оба варианта печатных плат, вы сможете скачать в общем архиве, в конце статьи. Не забудьте зачистить и обезжирить плату перед нанесением рисунка. Выводы деталей на ней расположены не близко, и проблем при пайке не возникнет даже у новичков

Отличие платы от оригинальной схемы, в наличии светодиода индикации и токоограничительного резистора в цепи светодиода. Все выводы подписаны на плате. Слева номера выводов кабеля СОМ порта, которые нужно подпаять к плате, не подписанные номера жил можно заизолировать и не подпаивать. Справа идут пины для подключения к программируемому микроконтроллеру.

У меня был собран пять лет назад данный программатор на плате, сделанной от маркера.  Так выглядела его печатная плата после лужения на этапе сборки в корпусе:

Извините за синюю изоленту)), тогда еще, 5 лет назад,  термоусадочные трубки были в диковинку.

Разъем кабеля программатора с другого конца был обрезан, и проводки кабеля были впаяны непосредственно в плату. Сам кабель был закреплен металлическим хомутом. На фото видно, что кабель толстый, и если бы был не закреплен, при изгибании мог нарушиться контакт проводков, на плате программатора

Для подключения к микроконтроллеру устанавливаемому для прошивания на беспаечную макетную плату, я использовал цветные гибкие проводки. Соединенные с проводками такого же цвета, взятыми из жилок витой пары. Это сделано для того, чтобы с одной стороны жилки не переломились при эксплуатации, а с другой было обеспечено легкое подключение к макетной плате. Длина данных проводков должна быть максимум 20 – 25 См, во избежание ошибок от наводок, при программировании. Не используйте обычные неэкранированные провода, вместо СОМ кабеля! Замучаетесь с ошибками при прошивке.

Программируемый микроконтроллер нуждается во внешнем питании +5 Вольт, подаваемом на программатор. Для этой цели можно собрать стабилизатор на микросхеме 7805, с питанием от внешнего блока питания, либо поступить проще и воспользоваться кабелем и зарядным устройством с выходом USB, подпаяв жилки кабеля USB прямо к печатной плате.

Для справки: питание и земля, в разъеме USB идут по краям. Вот распиновка разъема USB:

Теоретически можно, если вы достаточно аккуратный человек, запитаться и от USB порта компьютера, подключив к нему данный кабель, но помните, вы делаете это на свой страх и риск ! Лучше найти один раз деньги и приобрести USВ зарядное устройство. Не используйте отличающиеся от USB,  нестабилизированные зарядные устройства от сотовых телефонов и другой техники, вы рискуете испортить микроконтроллер.

При запитывании от USB порта компьютера, в случае замыкания жилок программатора +5 вольт (VCC) и земли (GND), вы рискуете сжечь южный мост материнской платы компьютера, ремонт такой материнской платы будет нецелесообразен. Я пользовался обоими вариантами для подачи питания, и через стабилизатор, и через кабель от зарядного USB. Еще один нюанс, после программирования микроконтроллера, чтобы микроконтроллер запустился, необходимо разорвать цепь RESET.

Это можно сделать просто выткнув проводок соединенный с пином RESET программатора. И тогда программа, зашитая в микроконтроллер начнет выполняться. Я решил сделать более удобное решение и поставил малогабаритный клавишный выключатель на разрыв цепи RESET.

Другими словами при его отключении, ток в этой цепи больше не течет и микроконтроллер начинает работу. Заместо клавишного выключателя можно воспользоваться любой малогабаритной кнопкой с фиксацией, либо поставить тумблер. Кому что подскажет фантазия 😉

Наверняка вы уже обратили внимание, что на схеме программатора Громова, есть какие-то незнакомые слова, а в частности VCC, GND, MISO, MOSI, SCK и  RESET. Разберем,  что же значат эти обозначения на примере микроконтроллера Attiny 2313.

В данном случае изображена очень распространенная и недорогая микросхема:  микроконтроллер AVR Tiny (он же Аttiny) 2313. Ножки микросхемы, как мы видим, имеют свой номер. Нумерация идет против часовой стрелки, от ключа в виде точки, расположенной в левом верхнем углу корпуса микроконтроллера. Ниже на рисунке пример того, как идет нумерация на микросхемах в корпусе DIP:

В первую очередь нас интересуют перечисленные выше шесть ножек. Назначения всех остальных мы вкратце коснемся в конце статьи.

Итак, расшифровываем:

VCC. На эту ногу мы подаем напряжение питания микросхемы. Стандартом является 5 Вольт. Допустимо отклонение в большую сторону, до 5.5 Вольт. Напряжение свыше 6 Вольт, может привести к порче микросхемы. Отклонение в меньшую сторону более допустимо. Есть версии микроконтроллеров Tiny 2313V, которые могут работать даже от двух пальчиковых батареек или аккумуляторов, или от напряжения в 2.4 Вольта.

GND. Ну это всем знакомая и известная “земля”, она же  ”масса”, и она же минус питания. Данный контакт является общим для всех устройств, которые имеют подключение друг к другу. Если вы соединяете, какие-либо блоки устройства между собой, их земли следует объединить. В данном случае, земля микроконтроллера, объединяется с землей программатора.

MISO. Сокращение от Master – In – Slave – Out. По этой линии передаются данные от микроконтроллера к программатору.

MOSI. Сокращение от Master – Out – Slave – In.  По этой линии тоже передаются данные от программатора к микроконтроллеру.

SCK. На этой линии формируется тактовый сигнал.

RESET. Данный вывод используется для сброса микроконтроллера после стирания одиночным импульсом.  Если RESET будет отключен, путем ошибочного выставления определенного фьюза, (о выставлении этого, и других фьюзов мы поговорим в следующих статьях) мы не сможем стереть и перепрошить микроконтроллер, через интерфейс SPI.

Достаточно подсоединить эти перечисленные 6 пинов программатора, к 6 ножкам микроконтроллера, и мы сможем прошить МК.

Рассмотрим остальные ножки МК:

У микроконтроллера Tiny2313 3 порта: А (А0-А2, 3 ножки), B (В0-В7, 8 ножек) D (D0-D6, 7 ножек), всего насчитывается 18 используемых в качестве ножек портов ввода – вывода. Каждую из этих ножек можно сконфигурировать отдельно на ввод и на вывод. Не являются ножками портов, только земля (GND) и питание (VCC).

Ниже рассмотрено дополнительное назначение некоторых ножек  МК:

OC1AИ OC1B.  Ножки для формирования ШИМ (Широтно – импульсная модуляция) сигнала, таймер 1.

OC0A и OC0B.  Ножки для формирования ШИМ сигнала, таймер 0.

AIN0  и AIN1. Ножки для подачи аналогового сигнала на микроконтроллер.

XTAL1 и XTAL2. Ножки для подключения кварцевого резонатора, для тактирования от него.

RXD и TXD. Линии подключения МК по интерфейсу UART.

Я надеюсь, данная статья будет полезна начинающим любителям микроконтроллеров, и позволит собрать программатор, который будет долгое время радовать вас своей работой.

Читаем далее: Как шить с помощью программатора Громова

Еще одним несложным, в плане изготовления, является COM программатор. При условии использования альтернативного режима COM порта Bitbang, отпадает необходимость в преобразовании интерфейса RS232 COM порта в SPI, необходимый для программирования. Остается только привести уровни сигналов COM порта (-12В, +12В) к необходимым (0, +5В). Это и делает схема COM программатора для AVR микроконтроллеров:

Данная схема программатора достаточно распространена и известна как программатор Громова. Название пошло от автора программы Algorithm Builder Геннадия Громова, который и предложил такую схему.

Если Вы планируете серьезно заняться микроконтроллерами, сделайте разъемы стандартными. Для разового программирования устройства я рекомендую использовать разъемы BLS «мамы» на программаторе (такими разъемами к материнской плате подключаются кнопки и светодиоды корпуса компа — именно их я и взял) и штырьки PLS «папы» на плате. Это позволяет максимально упростить разводку платы устройства, так как штырьки для программатора устанавливаются в непосредственной близости возле ножек микроконтроллера. Ножки MOSI, MISO, SCK у микроконтроллеров AVR всегда расположены вместе, поэтому для них можно применить строенный разъем. Отдельно делаем подключение для «земли»-GND и «сброса»-Reset.

Собрать COM программатор не составит труда:

Я сознательно не даю печатной платы под этот программатор, так как схема проста и возня с разводкой и травлением платы просто себя не оправдывает.

Для того чтобы наш COM программатор заработал нужна программа для программирования через COM порт, плата устройства к которой мы подключим программатор и тестовая прошивка для микроконтроллера.

Общие рекомендации:

Заключение:

Ссылки:Сайт Геннадия Громова, автора Algorithm Builder

(Visited 99 727 times, 10 visits today)Используемые источники:

  • https://www.syl.ru/article/207473/new_programmator-gromova-mikrokontrolleryi-dlya-nachinayuschih
  • https://www.ruselectronic.com/chto-takoe-programmator/
  • http://www.getchip.net/posts/delaem-com-programmator-dlya-avr-mikrokontrollerov/

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации