В подавляющим большинстве отечественных автомобилей, регулировка переключателем очень примитивна. При этом вентилятор работает создавая много шума, а уменьшить частоту вращения не представляется возможным. В автоматическом же режиме, частота вращения вентилятора так же не снижается, он просто периодически включается и выключается. И все же, данный вентилятор — это обычный двигатель постоянного тока, поэтому организовать плавную регулировку частоты вращения не так уж и сложно, для этого можно применить широтно-импульсный модулятор тока, протекающего через него.
Смысл в том, чтобы управление вентилятором осуществлять не при помощи переключателя, а при помощи переменного резистора. Регулировка будет плавной, от максимальной до некоторой минимальной, а в конце, при повороте ручки переменного резистора в сторону уменьшения питание мотора и вовсе будет полностью отключаться.
Принципиальная схема расположена на рисунке выше, рассмотрим ее. Импульсы, широту которых можно регулировать переменным резистором, генерирует мультивибратор на элементах DD1.1 и DD1.2 микросхемы К561ЛН2. Очень желательно взять именно микросхему К561ЛН2, а не инверторы, такие как К561ЛА7, К561ЛЕ5. Дело в том, что выходы у инверторов К561ЛН2 наиболее мощные, плюс их не четыре, а шесть. Благодаря этому, есть возможность изготовить мультивибратор на двух элементах, а оставшиеся четыре объединить в мощный буфер, который будет драйвером для полевого транзистора VT1. Как многим известно, одной из проблем мощных полевых транзисторов является большая емкость затвора. Статически, сопротивление их затвора весьма высоко ( т.е. стремится к бесконечности), но в реальности, имеется очень существенная емкость затвор-исток, которая создает значительный бросок тока в тот момент, когда на затвор поступает высокий логический уровень. Поэтому здесь и необходим усиленный буферный каскад, который способен поглотить этот бросок тока.
Частота импульсов составляет порядка 15 кГц и зависит от емкости конденсатора C1 и половины сопротивления резистора R1. При регулировке резистора R1, частота практически не изменяется, однако изменяется скважность импульсов, так как изменяется сопротивление заряда-разряда конденсатора C1. Диоды VD1 и VD2 коммутируют части сопротивления для разных полуволн. Максимальная частота вращения вентилятора будет в нижнем (по схеме) положении резистора R1. При этом, длительность нулевого перепада на затворе VT1 будет минимальная, а длительность единичного перепада — максимальная. Резистор R3 используется для того, чтобы не нарушать режим работы элемента DD1.1, не допуская опасного для него состояния. Минимальная частота вращения вентилятора, в верхнем (по схеме) положении резистора R1. В этом случае подбором резистора R2 необходимо выбрать минимальную скорость вращения вентилятора, при которой он еще работает без перебоев и остановок. Подбирать резистор необходимо под каждый электродвигатель индивидуально. Как следствие сопротивление резистора R2 может получится совершенно иным, нежели указанном на схеме.
В данном схеме, используется резистор R1 с выключателем на одном валу. Его необходимо подключить так, чтобы выключатель SB1 выключался при повороте в крайнее верхнее (по схеме) положение резистора R1, то есть — меньше минимума. При вращении резистора R1 в выключенное состояние, контакты выключателя SB1 размыкаются и на объединенные входы элементов DD1.3-DD1.6 поступает напряжение логической единицы через резистор R4. В то время же время, на выходах DD1.3-DD1.6 будет логический ноль. Как следствие, транзистор VT1 будет закрыт и вентилятор M1 работать не будет.
Для включения вентилятора печки, необходимо повернуть резистор R1 из выключенного положения. После чего контакты выключателя SB1 замкнуться и на затвор транзистора VT1 начнут приходить импульсы, скважность которых будет соответствовать минимальной частоте вращения вентилятора ( которую предварительно необходимо задать подбором резистора R2). Если продолжать поворачивать резистор R1, то скважность импульсов поступающих на затвор транзистора VT1 будет увеличиваться, естественно будет возрастать и частота вращения вентилятора.
скачать архив
Иногда люблю почитать о ремонтах техники, поэтому решил поделиться своим опытом. В этот раз устраняем неисправность регулятора оборотов двигателя автомобильной печки. Уверен, пригодится многим, поскольку конструктив ломающегося элемента идентичен у подавляющего большинства автомобилей, от ВАЗов до иномарок.
Симптомы: регулятор печки не работает на 1, 2, 3 скорости, но работает на самой высокой — 4 скорости.
Диагноз: сгорел термопредохранитель резистора регулятора оборотов печки.
Лечение:
1. Замена всего резистора. Цена запчасти в среднем $7-15. Самостоятельная замена — дело 5-10 минут.
2. Самостоятельный ремонт — замена термопредохранителя. Цена запчасти $0,3-0,4 Самостоятельная замена — 10-15 минут. Чувствуете разницу?
Порядок ремонта примере Форд Торнео Коннект.
Откидываем бардачок. С лева от корпуса печки находятся два пучка проводов, один из которых идет вниз, к разъёму в корпусе воздуховода.
Отсоединяем разъем (от резистора). Сам резистор вкручен одним саморезом в канал воздуховода. Там он обдувается холодным воздухом, так как он имеет довольно высокую рабочую температуру.
Откручиваем саморез и извлекаем резистор (зелененький такой). Видимых повреждений на нем обычно нет.
Тестером, на всякий случай, прозваниваем пластинки реостата (те, что залиты в зеленый изолятор). Затем прозваниваем термопредохранитель, расположенный с торца. Если он не звонится — значит сгорел и подлежит замене.
Покупаем такой же термопредохранитель, либо чуть выше по температурным показателям, указанным на его корпусе. В моем случае на 250V 10А с температурой 223 град (штатный 216 град).
Паять нельзя – отвалится. Либо точечная сварка (такую услугу можно спросить на радиорынке), либо соединить выводы резистора с выводами термопредохранителем посредством обжатия их с помощью коротких обрезков медной толстостенной трубки или с помощью распиленного напополам винтового зажима от монтажной электротехнической делимой колодки с отверстием подходящего диаметра (от колодки, как на фото).
Устанавливаем резистор в авто, подключаем и наслаждаемся результатами своей работы.
7Используемые источники:
- https://kiloom.ru/sxema/regulyator-dlya-pechki-avtomobilya.html
- story/remont_regulyatora_oborotov_dvigatelya_avtomobilnoy_pechki_rezistora_5158453