Андрей Смирнов
Время чтения: ~16 мин.
Просмотров: 164

Генератор синусоидального сигнала. Схема и описание

В радиолюбительской практике часто возникает необходимости использовать генератор синусоидальных колебаний. Применения ему можно найти самые разнообразные. Рассмотрим как создать генератор синусоидального сигнала на мосту Вина со стабильной амплитудой и частотой.

В статье описывается разработка схемы генератора синусоидального сигнала. Сгенерировать нужную частоту можно и программно: Программа Audacity как простой генератор звука и шума

Наиболее удобным, с точки зрения сборки и наладки, вариантом генератора синусоидального сигнала является генератор, построенный на мосту Вина, на современном Операционном Усилителе (ОУ).

Содержание статьи

Мост Вина

Сам по себе мост Вина является полосовым фильтром, состоящим из двух RC фильтров. Он выделяет центральную частоту и подавляет остальные частоты.

Мост придумал, Макс Вин еще в 1891 году. На принципиальной схеме, сам мост Вина обычно изображается следующим образом:

01-sinus-generator-600x431.png

Картинка позаимствована у Википедии

Мост Вина обладает отношением выходного напряжения ко входному b=1/3 . Это важный момент, потому что этот коэффициент определяет условия стабильной генерации. Но об этом чуть позже

Как рассчитать частоту

На мосту Вина часто строят автогенераторы и измерители индуктивности. Чтобы не усложнять себе жизнь обычно используют R1=R2=R и C1=C2=C. Благодаря этому можно упростить формулу. Основная частота моста рассчитывается из соотношения:

f=1/2πRC

Практически любой фильтр можно рассматривать как делитель напряжения, зависящий от частоты. Поэтому при выборе номиналов резистора и конденсатора желательно, чтобы на резонансной частоте комплексное сопротивление конденсатора (Z), было равно, или хотя бы одного порядка с сопротивлением резистора.

Zc=1/ωC=1/2πνC

где ω (омега) — циклическая частота, ν (ню) — линейная частота, ω=2πν

Мост Вина и операционный усилитель

Сам по себе мост Вина не является генератором сигнала. Для возникновения генерации его следует разместить в цепи положительной обратной связи операционного усилителя. Такой автогенератор можно построить и на транзисторе.  Но использование ОУ явно упростит жизнь и даст лучшие характеристики.

02-sinus-generator-600x354.png

Коэффициент усиления на троечку

Мост Вина имеет коэффициент пропускания b=1/3. Поэтому условием генерации является то, что ОУ должен обеспечивать коэффициент усиления равный трем. В таком случает произведение коэффициентов пропускания моста Вина и усиления ОУ даст 1. И будет происходить стабильная генерация заданной частоты.

Если бы мир был идеальным, то задав резисторами в цепи отрицательной обратной связи, нужный коэфф усиления, мы бы получили готовый генератор.

03-sinus-generator-600x318.png

Это неинвертирующий усилитель и его коэффициент усиления определяется соотношением:  K=1+R2/R1

Но увы, мир не идеален.… На практике оказывается, что для запуска генерации необходимо, чтобы в самый начальный момент коэфф. усиления был немного больше 3-х, а далее для стабильной генерации он поддерживался равным 3.

Если коэффициент усиления будет меньше 3, то генератор заглохнет, если больше — то сигнал, достигнув напряжения питания, начнет искажаться, и наступит насыщение.

При насыщении, на выходе будет поддерживаться напряжение, близкое к одному из напряжений питания. И будут происходить случайные хаотичные переключения между напряжениями питания.

Поэтому, строя генератор на мосте Вина, прибегают к использованию нелинейного элемента в цепи отрицательной обратной связи, регулирующего коэффициент усиления. В таком случае генератор будет сам себя уравновешивать и поддерживать генерацию на одинаковом уровне.

Стабилизация амплитуды на лампе накаливания

В самом классическом варианте генератора на мосте Вина на ОУ, применяется миниатюрная низковольтная лампа накаливания, которая устанавливается вместо резистора.

При включении такого генератора, в первый момент, спираль лампы холодная и ее сопротивление мало. Это способствует запуску генератора (K>3). Затем, по мере нагрева, сопротивление спирали увеличивается, а коэффициент усиления снижается, пока не дойдет до равновесия (K=3).

Цепь положительной обратной связи, в которую был помещен мост Вина, остается без изменений. Общая принципиальная схема генератора выглядит следующим образом:

Элементы положительной обратной связи ОУ определяют частоту генерации. А элементы отрицательной обратной связи — усиление.

Идея использования лампочки, в качестве управляющего элемента очень интересна и используется по сей день. Но у лампочки, увы, есть ряд недостатков:

  • требуется подбор лампочки и токоограничивающего резистора R*.
  • при регулярном использовании генератора, срок жизни лампочки обычно ограничивается несколькими месяцами
  • управляющие свойства лампочки зависят от температуры в комнате.

Другим интересным вариантом является применение терморезистора с прямым подогревом. По сути, идея та же, только вместо спирали лампочки используется терморезистор. Проблема в том, что его нужно для начала найти и опять таки подобрать его и токоограничиващие резисторы.

Стабилизация амплитуды на светодиодах

Эффективным методом стабилизации амплитуды выходного напряжения генератора синусоидальных сигналов является применение в цепи отрицательной обратной связи ОУ светодиодов (VD1 и VD2).

Основной коэффициент усиления задается резисторами R3 и R4. Остальные же элементы (R5, R6 и светодиоды) регулируют коэффициент усиления в небольшом диапазоне, поддерживая генерацию стабильной. Резистором R5 можно регулировать величину выходного напряжения в интервале примерное 5-10 вольт.

В дополнительной цепи ОС желательно использовать низкоомные резисторы (R5 и R6). Это позволит пропускать значительный ток (до 5мА) через светодиоды и они будут находиться в оптимальном режиме. Даже будут немного светиться 🙂

На показанной выше схеме, элементы моста Вина рассчитаны для генерации на частоте 400 Гц, однако они могут быть легко пересчитаны для любой другой частоты по формулам, представленным в начале статьи.

Качество генерации и применяемых элементов

Важно, чтобы операционный усилитель мог обеспечить необходимый для генерации ток и обладал достаточной полосой пропускания по частоте. Использование в качестве ОУ народных TL062 и TL072 дало очень печальные результаты на частоте генерации 100кГц. Форму сигнала было трудно назвать синусоидальной, скорее это был треугольный сигнал. Использование TDA 2320 дало еще более худший результат.

А вот NE5532 показа себя с отличной стороны, выдав на выходе сигнал очень похожий на синусоидальный. LM833 так же справилась с задачей на отлично. Так что именно NE5532 и LM833 рекомендуются к использованию как доступные и распространенные качественные ОУ. Хотя с понижением частоты гораздо лучше себя будут чувствовать и остальные ОУ.

Точность частоты генерации напрямую зависит от точности элементов частотозависимой цепи. И в данном случае важно не только соответствие номинала элемента надписи на нем. Более точные детали имеют лучшую стабильность величин при изменении температуры.

В авторском варианте были применены резистор типа С2-13 ±0.5% и слюдяные конденсаторы точностью ±2%. Применение резисторов указанного типа обусловлено малой зависимостью их сопротивления от температуры. Слюдяные конденсаторы так же мало зависят от температуры и имеют низкий ТКЕ.

Минусы светодиодов

На светодиодах стоит остановиться отдельно. Их использование в схеме синус генератора вызвано величиной падения напряжения, которое обычно лежит в интервале 1.2-1.5 вольта. Это позволяет получать достаточно высокое значение выходного напряжения.

После реализации схемы, на макетной плате, выяснилось, что из-за разброса параметров светодиодов, фронты синусоиды на выходе генератора не симметричны. Это немного заметно даже на приведенной выше фотографии. Помимо этого присутствовали небольшие искажения формы генерируемого синуса, вызванные недостаточной скоростью работы светодиодов для частоты генерации 100 кГц.

Диоды 4148 вместо светодиодов

Светодиоды были заменены на всеми любимые диоды 4148. Это доступные быстродействующие сигнальные диоды со скоростью переключения менее 4 нс. Схема при этом осталась полноценно работоспособной, от описанных выше проблем не осталось и следа, а синусоида приобрела идеальный вид.

На следующей схеме элементы моста вина рассчитаны на частоту генерации 100 кГц. Так же переменный резистор R5 был заменен на постоянные, но об этом позже.

В отличие от светодиодов, падение напряжения на p-n переходе обычных диодов составляет 0.6÷0.7 В, поэтому величина выходного напряжения генератора составила около 2.5 В. Для увеличения выходного напряжения возможно включение нескольких диодов последовательно, вместо одного, например вот так:

Однако увеличение количества нелинейных элементов сделает генератор более зависимым от внешней температуры. По этой причине было решено отказаться от такого подхода и использовать по одному диоду.

Замена переменного резистора постоянными

Теперь о подстроечном резисторе. Изначально в качестве резистора R5 был применен многооборотный подстроечный резистор на 470 Ом. Он позволял точно регулировать величину выходного напряжения.

Использование переменного резистора в подобных цепях нежелательно по двум основным причинам:

  • ненадежность подвижного контакта
  • наличие у многооборотных подстроечных резисторов паразитной индуктивности, которая может отрицательно сказаться на качестве выходного сигнала

При построении любого генератора крайне желательно наличие осциллографа. Переменный резистор R5 напрямую влияет на генерацию — как на амлитуду так и на стабильность.

Для представленной схемы генерация стабильна лишь в небольшом интервале сопротивлений этого резистора. Если соотношение сопротивлений больше требуемого — начинается клиппинг, т.е. синусоида будет подрезаться сверху и снизу. Если меньше — форма синусоиды начинает искажаться, а при дальнейшем уменьшении генерация глохнет.

Так же это зависит от используемого напряжения питания. Описываемая схема исходно была собрана на ОУ LM833 с питанием ±9В. Затем, без изменения схемы, ОУ были заменены на AD8616, а напряжение питания на ±2,5В (максимум для этих ОУ). В итоге такой замены синусоида на выходе подрезалась. Подбор резисторов дал значения 210 и 165 ом, вместо 150 и 330 соответственно.

Как подобрать резисторы «на глаз»

В принципе можно оставить и подстроечный резистор. Все зависит от требуемой точности и генерируемой частоты синусоидального сигнала.

Для самостоятельного подбора следует, в первую очередь, установить подстроечный резистор номиналом 200-500 Ом. Подав выходной сигнал генератора на осциллограф и вращая подстроечный резистор дойти до момента когда начнется ограничение.

Затем понижая амплитуду найти положение, в котором форма синусоиды будет наилучшей.Теперь можно выпаять подстроечник, замерить получившиеся величины сопротивлений и впаять максимально близкие значения.

Если вам требуется генератор синусоидального сигнала звуковой частоты, то можно обойтись и без осциллографа. Для этого, опять таки, лучше дойти до момента когда сигнал, на слух, начнет искажаться из-за подрезания, а затем убавить амплитуду. Убавлять следует до тех пор пока искажения не пропадут, а затем еще немного. Это необходимо т.к. на слух не всегда можно уловить искажения и в 10%.

Дополнительное усиление

Генератор синуса был собран на сдвоенном ОУ, и половина микросхемы осталась висеть в воздухе. Поэтому логично задействовать ее под регулируемый усилитель напряжения. Это позволило перенести переменный резистор из дополнительной цепи ОС генератора в каскад усилителя напряжения для регулировки выходного напряжения.

Применение дополнительного усилительного каскада гарантирует лучшее согласование выхода генератора с нагрузкой. Он был построен по классической схеме неинвертирующего усилителя.

Указанные номиналы позволяют изменять коэффициент усиления от 2 до 5. При необходимости номиналы можно пересчитать под требуемую задачу. Коэффициент усиления каскада задается соотношением:

K=1+R2/R1

Резистор R1 представляет из себя сумму последовательно включенных переменного и постоянного резисторов. Постоянный резистор нужен, чтобы при минимальном положении ручки переменного резистора коэффициент усиления не ушел в бесконечность.

Как умощнить выход

Генератор предполагался для работы на низкоомную нагрузку в несколько Ом. Разумеется ни один маломощный ОУ не сможет выдать необходимый ток.

Для умощнения, на выходе генератора разместился повторитель на TDA2030. Все вкусности такого применения этой микросхемы описаны в статье Схема повторителя напряжение на ОУ. Мощный повторитель напряжения на TDA2030.

А вот так собственно выглядит схема всего синусоидального генератора с усилителем напряжения и повторителем на выходе:

Генератор синуса на мосту Вина можно собрать и на самой TDA2030 в качестве ОУ. Все зависит от требуемой точности и выбранной частоты генерации.

Если нет особых требований к качеству генерации и требуемая частота не превышает 80-100 кГц, но при этом предполагается работа на низкоомную нагрузку, то этот вариант вам идеально подойдет.

Заключение

Генератор на мосту Вина — это не единственный способ генерации синусоиды. Если вы нуждаетесь в высокоточной стабилизации частоты то лучше смотреть в сторону генераторов с кварцевым резонатором.

Однако, описанная схема, подойдет для подавляющего большинства случаев, когда требуется получение стабильного, как по частоте так и по амплитуде, синусоидального сигнала.

Генерация это хорошо, а как точно измерить величину переменного напряжения высокой частоты? Для это отлично подходит схема которая называется Активный выпрямитель.

Материал подготовлен исключительно для сайтаAudioGeek.ru

10 февраля 2019, 21:11 | Инструменты

Генератор сигналов был в лаборатории нашего института — это такой большой ящик с десятком ручек регулировки. Он был ламповый и грелся минуты три до выхода на нормальный режим работы. Может ли маленькая платка за 7 долларов выполнять основные его функции? Посмотрим.

Технические характеристики генератора из описания магазина:

Там же красным по белому написано, что эта версия поставки не включает в комплект корпус. Но мне прислали с корпусом. Приятная неожиданность.

Итак, генератор сигнала поставляется в разобранном виде. Но собирается настолько быстро и приятно, что это пожалуй даже плюс.

В комплекте присутствует плата, набор комплектующих, микросхема XR-2206 (основа всего проекта), инструкция, детали корпуса из оргстекла и необходимые для сборки винтики и гаечки.

Инструкция достаточно подробная, ошибиться в сборке по ней невозможно. Кроме схемы размещения деталей, там указан из список с упоминанием полярности там, где это надо, обшие рекомендации по сборке и принципиальная схема обвязки микросхемы. Все на английском.

Деталей мало, установка очевидна, справится даже чайник. Белая полоска на электролитиках должна совпадать с заштрихованной стороной круга, нарисованного на плате. Резисторы лучше проверять мультиметром, прежде чем устанавливать. Пожалуй, и вся премудрость.

Микросхема генератора. 

Детели установлены на свои места, можно приступать к пайке.

Но прежде чем паять, я заглянул в датшит и полистал в интернете. Там советуют заменить резистор R4, отвечающий за подстройку синуса, на реостат. Это даст возможности минимизировать ненужные гармоники и приблизить сигнал к идеальной синусоиде. Так что я решил сразу впаять реостат в 500 Ом.

Вот так получилось. Паяется все легко, только перед впаиванием разъема питания нужно примерить боковину корпуса, чтобы потом все нормально собралось. Снизу платы желательно длинные «хвосты» не оставлять, так как плата должна быть прижата к дну корпуса, иначе не хватит длины болтов, фиксирующих плату. 

В конце собираем корпус. Детали хорошо подогнаны друг к другу. Винты вкручиваются в фигурные отверстия в форме звездочек. Они легко и с первого раза нарезают там резьбу, сидят потом плотно, не выпадают и не выкручиваются.

Длины штатных винтов, крепящих плату, мне не хватило, так что я подобрал свои, даже с дистанционными шайбочками.

Вот итог всех трудов:

Подсоединяем осциллограф, включаем…

Все работает. Попробуем повысить напряжение питания. По датшиту микросхемы, она питается напряжением от 10 до 26 вольт.

Синхронизация сбивается, при обследованиии синусодиы видно, что начинет сбиваться фаза.

В режиме прямоугольного сигнала та же история:

При снижении напряжения питания ниже 12 вольт сигнал восстанавливается, но амплитуда выходного сигнала ограничивается входным минус 2 — 3 вольта:

Ну нам и не обещали работу от 26 вольт. В описании генератора заявлена работа как раз от 12 вольт. Так что все по-честному.

Посмотрим на диапазон частот:

Минимально получилось порядка 0,6 Гц.

Не подумайте, что это такой затейливый сигнал, это просто осциллограф дуреет и считает, что мы имеем дело с постоянным напряжением. При переключении в режим постоянного напряжение получаем такую картину:

Вот так вот! Полка 1 вольт, размах сигнала от 1 до 9,8 вольт.  Амплитуда, таким образом, 8,8 вольта. Такая же история и с другими сигналами — синусом и треугольником. Для некоторых применений это не критично, а вот для тестирования аппаратуры, где нет входного фильтра, полка ни к чему. Такой сигнал надо пропускать через конденсатор, чтобы лишить его постоянной составляющей.

Устанавливаем конденсатор 2,2мкФ:

Ну вот. Теперь красивая синусоида вокруг нуля и в режиме измерения постоянки!

Крупнее, в режиме переменного напряжения:

И тот же сигнал, в режиме постоянного напряжения, с фильтрующим конденсатором 2,2мкФ:

С треугольником что-то не задалось, форма получилась такая:

При замене конденсатора на 3,3 мкФ все пришло более-менее в норму:

Но, прямо скажем, 0,6 Гц — не самый актуальный режим работы. Вот как выглядит треугольник на частоте в 1 КГц. Без конденсатора, в режиме AC:

С конденсатором, в режиме DC:

Как видим, все совершенно одинаково. 

Теперь выкручиваем ручки частоты на максимум:

Синус красивый, частота получилась даже больше заявленной: 1,339 МГц.

Пробуем треугольник:

Ну а что вы хотели — на таких-то частотах! От синуса отличается чуть большей амплитудой. На самом деле, такая разница в амплитудных значениях характерна для всего диапазона частот: в микросхеме синус делается из треугольника, у которого сглаживаются вершины.

Меандр:

Прямоугольный сигнал идет с другого выхода микросхемы. Он не регулируется по амплитуде, хотя она у него зависит от входного напряжения.  На самом деле, это еще большой вопрос, выдает ли генератор кривой сигнал, или это осциллограф не может его отобразить. Или вообще щупы виноваты. 

Амплитуда синуса и треугольника, как я уже говорил, может тоже регулироваться в известных пределах: если перестараться, то треугольник может получиться таким:

Соответственно, заваливаются и вершины синуса, но это не так заметно. Поэтому в режиме синуса полезно иногда переключаться на треугольник и проверять, хорошо ли отображаются вершины. Уменьшаем амплитуду:

И еще немного:

Ну вот, теперь и синус будет красивый:

Для того, чтобы понять, насколько хорош этот синус, есть проверенный способ: глянуть на преобразование Фурье от него. Вот что получилось:

Видим красивые пики на боковых гармониках, ну так это же треугольник, а не синусоида. Для комплекта, вот прямоугольный сигнал:

Тут и так все понятно. Как видим, прямоугольник на 100 КГц остается более-менее прямоугольным. Проверим, что делается на 1 МГц:

Синус синусоиден.

Треугольник синусоиден.

Меандр похож на клюв тукана.

Картинки у меня кончились, теперь пару слов общих впечатлений.

Ссылка на генератор сигналов в магазине: тыц. (цена сегодня $7.68)

Подстроечный реостатик на Али — набор 15 штук разных номиналов, на все случаи жизни. Цена сто рублей. Пятьсот Ом там тоже есть. 

Данная схема генератора низкой частоты гармонического синусоидального сигнала предназначена для настройки и ремонта усилителей звуковой частоты.

Генератор синусоидального сигнала совместно с милливольтметром, осциллографом или измерителя искажений создает ценный комплекс для настройки и ремонта всех каскадов усилителя звуковой частоты.

Основные характеристики:

  • Генерируемые частоты: 300 Гц, 1 кГц, 3 кГц.
  • Максимальное гармоническое искажение (THD): 0,11% — 1 кГц, 0,23% — 300Гц, 0,05% — 3 кГц
  • Ток потребления: 4,5 мА
  • Выбор выходного напряжения: 0 — 77,5 мВ, 0 — 0,775 В.

Схема синусоидального генератора достаточно проста и построена на двух транзисторах, которые обеспечивают высокую частоту и амплитудную стабильность. Конструкция генератора не требует никаких элементов стабилизации, таких как лампы, термисторы, или других специальных компонентов для ограничения амплитуды.

Каждая из трех частот (300 Гц, 1 кГц и 3 кГц) устанавливается переключателем S1. Амплитуда выходного сигнала может быть плавно изменена посредством переменного резистора R15 в двух диапазонах, которые устанавливаются переключателем S2. Доступные амплитудные диапазоны: 0 — 77,5 мВ (219,7 мВ от пика до пика) и 0 — 0,775 В (2,191 В от пика до пика).

На следующих рисунках приведена разводка печатной платы и расположение элементов на ней.

Перечень необходимых радиодеталей:

  •  R1 — 12k
  •  R2 — 2k2
  •  R3, R4, R5, R15 — 1k переменный
  •  R6, R7 — 1K5
  •  R8 — 1k
  •  R9 — 4k7
  •  R10 — 3k3
  •  R11 — 2k7
  •  R12 — 300
  •  R13 — 100k
  •  С1 — 22n
  •  С2 — 3u3
  •  С3 — 330n
  •  С4 — 56n
  •  С5 — 330n
  •  С6, С7 — 100n
  •  D1, D2 — 1N4148
  •  T1, T2, T3 — BC337
  •  IO1 — 78L05

Если все детали установлены правильно и в монтаже нет никаких ошибок, генератор синусоидального сигнала должен заработать при первом же включении.

Напряжение питания схемы может быть в диапазоне 8-15 вольт. Чтобы поддержать стабильную амплитуду напряжения выходного сигнала, линия питания дополнительно стабилизирована микросхемой 78L05 и диодами D1, D2 в результате на выходе стабилизатора около 6,2 вольт.

Перед первым включением необходимо подключить выход генератора к частотомеру или осциллографу и с помощью подстроичных резисторов R3, R4 и R5 установить точную выходную частоту для каждого из диапазонов: 300 Гц, 1 кГц и 3 кГц. При необходимости, если не совсем удается подстроить частоты, то можно дополнительно подобрать сопротивления постоянных резисторов R6-R8.

http://pandatron.cz/?1134&sinusovy_generator_s_nizkym_zkreslenim

генератор2014-10-05Используемые источники:

  • https://audiogeek.ru/sinus-generator/
  • https://www.ixbt.com/live/instruments/generator-signalov-iz-nabora-plyusy-i-minusy.html
  • http://fornk.ru/1564-generator-sinusoidalnogo-signala/

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации