Андрей Смирнов
Время чтения: ~15 мин.
Просмотров: 25

Ремонт светодиодного светильника армстронг 1

День добрый юным ремонтерам. Сегодня в обзоре ремонт светодиодного светильника Varton 12W с неисправностью ,,не светиться, не работает!», подаренный мне безвоздмездно.

Разбираем светильник и при внимательном осмотре сразу же обнаруживаем светодиод с чёрной точкой, что служит твёрдым доказательством его неработоспособности.

1.1.Светильник-разобран.-1024x568.jpg

Разборка светильника

2.Сразу-бросается-в-глаза-сгоревший-светодиод.-1024x725.jpg

Сразу бросается в глаза сгоревший светодиод.

3.Сгоревший-светодиод-вблизи.-1024x977.jpg

Сгоревший светодиод вблизи.

На других светодиодах точек не обнаружено. Это обнадёжило, так как практика показывает, что в подобных случаях с подобными светодиодными светильниками, причина неисправности с высокой долей вероятности может оказаться в одном лишь светодиоде. Который перегорев, разорвал собой цепь питания остальных светодиодов, включённых в данном случае в последовательную цепь.

Продолжаем, согласно общепринятому алгоритму ремонта. Вторым пунком у нас следует внешний внимательный осмотр платы питания, на предмет вздувшихся электролитических конденсаторов, подозрительных, подгоревших деталей, почернений платы. Таковых не обнаружилось.

Вздувшихся конденсаторов и  изьянов не обнаружено.

С оборотной стороны платы питания, тоже всё оказалось в порядке, сузив таким образом зону поиска неисправности. Что ещё более прибавило оптимизма и уверенности в благополучном исходе ремонта, подсказав что и напряжение питания выдаваемое блоком питания, вполне может оказаться на месте и скорей всего в пределах нормы.

Плата с обратной-стороны в порядке.

Подключил прибор к выходу блока питания, подключил светильник к электросети, заизолировав высоковольтные провода (кембрики, как показано на фото) и увидел что напряжение на выходе блока питания и на входе светодиодной ленты присутствует.

Проверка выходного напряжения без нагрузки.

УВАЖАЕМЫЕ РЕМОНТЕРЫ! ВНИМАНИЕ! СОБЛЮДАЙТЕ ПРАВИЛА БЕЗОПАСНОСТИ В УСЛОВИЯХ С ПОВЫШЕННЫМ, ОПАСНЫМ ДЛЯ ДРАГОЦЕННОЙ ЧЕЛОВЕЧЕСКОЙ ЖИЗНИ, ТОКАМИ И НАПРЯЖЕНИЯМИ!!! ПРИ РЕМОНТЕ ПОД НАПРЯЖЕНИЕМ ДЕРЖИТЕСЬ ПОДАЛЬШЕ ОТ БАТАРЕЙ ОТОПЛЕНИЯ (заземление). Опасными считаются напряжения свыше 50В! Общие рекомендации для ремонтеров-слаботочников таковы; при вынужденной работе под высоким напряжением, берегите глаза, не сидите за рабочим местом с БОСЫМИ НОГАМИ на голом бетонном полу (РЕЗИНОВЫЙ КОВРИК) и РАБОТАЙТЕ ОДНОЙ РУКОЙ! Не становитесь живым проводником тока!

Чтобы уменьшить время на ремонт и на нудную проверку остальных светодиодов мультиметром, для начала замыкаю сгоревший светодиод пинцетом, (пинцет !С ИЗОЛИРОВАННЫМИ РУЧКАМИ!), под напряжением. Светильник заработал. Далее пошёл искать в домашних завалах подходящий светодиод.

Смелое замыкание светодиода.

Нашёл плашку со светодиодами от сгоревшей лампы, предстояла задача их снять. Обычным паяльником в данном случае справиться проблематично. Я демонитрую светодиоды в таких случаях просто применяя обычную кухонную электроплитку. С тем важным условием чтобы НЕ ПЕРЕГРЕТЬ СВЕТОДИОДЫ, так как они очень этого боятся (температурная деградация светодиодов), доводя температуру лишь до уровня расплавления олова. Выставляю на конфорке нагрев на 2-ечку. Нагреваю планку со светодиодами, повторюсь, до температуры расплавления олова, шустро убираю блату с конфорки и быстренько снимаю их по очереди. При необходимости, процесс нагрева-снятия плашки повторяю, памятуя о перегревах. Подобным образом снимаю и наш сгоревший светодиод.

Снятие запасного светодиода.

Прозвонил снятые светодиоды мультиметром, проверил на реальную работоспособность, подавая на них напряжение. Вычислив математически по количеству оных на питающее напряжение с нагрузкой, замеряв и помня что в данном светильнике под нагрузкой реально выходное напряжение проседает до 85В, вышло что-то около 3,5В ,,на брата»,. Припаиваю наш ,,новый» светодиод, так как новых в заначке не обнаружилось, уже обычным паяльником. Снятый светодиод оказался немного короче, поэтому пришлось слега повозиться, проявить внимательность и ,,навесить соплю» из олова. Подробности на фото.

Установка нового светодиода.

Подключил к электросети, заработало, светодиод оказался слегка ,,прохладного» свечения, нежели его новоиспечённые ,,тёплые» собратья. Протестировал светильник, оставив его на пару часов во включенном состоянии, неисправность не повторилась. На сим собрал светильник в обратном порядке и в хорошем расположении духа пошёл отмечать событие чаем с конфетами!

Проверка работоспособности.

Удачи и до встречи!

Для благодарности и поддержки автора VasyaWebMoney:R993674847010Яндекс.Деньги:410016721348624Карта Мир: 2202 2017 3486 8330Подробнее здесь.

Поломок светодиодного светильника армстронг может быть всего две, неисправен блок питания (драйвер) или сама светодиодная лента. Причин поломки может быть несколько, самая распространенная — технологические ошибки при сборке или предельно упрощенная схема драйвера питания. Очень часто непропай на схеме, как фото ниже: Низкое качество пайки и дешевый припой дают о себе знать. Плохой контакт в месте пайки диода сильно грелся, затем припой просто выгорел и сгорел диод в цепи питания драйвера. Этот светильник армстронг проработал три месяца, неисправность вылезла при включении света вечером.

Что выгорает в блоке питания светильника Амстронг часто:

Основные элементы блока питания, которые стоит менять это варистор (защищающий схему от повышенного напряжения), предохранитель и электролитический конденсатор. Остальные элементы менять как правило нецелесообразно по ряду причин.

Неисправный варистор можно определить по поврежденному корпусу, в случае появления напряжения выше допустимого порога (240-270 вольт) происходит пробой варистора и цепь питания размыкается. Источником такого пробоя может быть статическое напряжение которое достигает значительного значения при малом токе.

Неисправный электролитический конденсатор определить так же просто при внешнем осмотре схемы. У них вытекает электролит и вздувается верхняя часть корпуса. причин может быть несколько, например высокая температура эксплуатации (установлен рядом с ключевым транзистором без радиатора) или паразитные токи, которые так же приводят к пробою электролита.

Принципиальная электрическая схема

У каждого производителя светильников Амстронг своя схема блока питания, найти типовую именно для Вашего светильника почти невозможно, уж очень они разные. Как пример можете использовать схему ниже:

Но как правило, схема блока питания значительно проще, уж очень любят экономить китайцы.

Например, вот такая электрическая схема светильника Амстронг:

Видео о ремонте драйвера светодиодного светильника Амстронг:

Современные Led светильники прочно входят в наш быт, позволяют значительно снижать потребление электроэнергии, но, в силу разных обстоятельств, периодически выходят из строя.

Поэтому простой ремонт светодиодных ламп 220 В своими руками в домашних условиях является актуальной задачей для любого умельца.

В статье я показываю поэтапный порядок его выполнения за 4 шага, доступных мастеру с начальными навыками электрика.

Содержание статьи

Чтобы отремонтировать неисправный Led светильник домашнему мастеру потребуется:

  1. оценить его конструкцию;
  2. выявить неисправность;
  3. заменить отказавшую деталь.

Эта простая последовательность действий служит базой последующего описания.

Как конструкция светодиодной лампы 220 В влияет на ее ремонт: 3 важных особенности

Здесь важно четко понимать процессы, сопровождающие преобразование электрической энергии в световой поток, которые заложены в устройство светильника.

2 технологии создания светового потока источником света: 2 подхода к ремонту Led ламп

Все лед светильники на 220 В условно можно разделить на 2 класса, использующие:

  • обычные твердотельные кристаллы на светодиодах DIP, SMD или COB типа;
  • светоизлучающие нитевидные элементы типа «Filament», выполненные из большого количества последовательных цепочек светодиодных кристаллов.

Они обладают общими конструкторскими решениями:

  • выполнены под единый стандартизированный тип цоколя, обычно Е 27 или Е14;
  • имеют однотипную систему подключения полупроводниковых переходов к сети 220 вольт через упрощенный блок питания или драйвер.

Однако филаментная лампа имеет более сложное устройство:

  • у нее цепочки светодиодных кристаллов собраны единой нитью, закрытой в стеклянной колбе с покрытием люминофора, корректирующим качество светодиодного освещения;
  • филаментные нити так сориентированы в пространстве, что свет от источника излучается равномерно во все стороны, как у лампочки Ильича;
  • вся осветительная конструкция помещена в герметично закрытый стеклянный корпус и заполнена гелием, улучшающим отвод тепла от полупроводниковых элементов;
  • мощность одной нити подобрана так, что составляет 1 ватт. Это позволяет визуально оценивать потребление филаментного источника по их количеству.

Ремонт лампы Filament связан с вскрытием корпуса и нарушением его герметичности. Это ухудшает дизайнерский замысел, влияет на интерьер, несколько изменяет теплообмен, что незначительно сказывается на ресурсе отремонтированного светильника.

По этому вопросу существует другое техническое обоснование.

Альтернативное мнение:лампа Филамент, включенная без колбы, обеспечивает работу светодиодов с открытым внутренним пространством, обеспечивающим их охлаждение за счет естественной циркуляции воздуха.

Этот прием вполне можно использовать для источников света, расположенных в сухих помещениях, недоступных для случайного прикосновения человека. Впрочем, выбор вы можете сделать самостоятельно.

Когда какой-то кристалл нити филамента повреждается, то вся цепочка выходит из строя. Ее надо полностью заменять. Других вариантов ремонта нет, как и запчастей в продаже. Поэтому такие дефектные лампочки вначале накапливают, а затем собирают одну исправную из нескольких поврежденных.

С приведенной особенностью ремонта лед ламп с филаментовыми нитями приходится мириться. У домашнего мастера нет технических возможностей обойти эту проблему.

Обычные лампочки на SMD светодиодах допускают разборку корпуса и последующий ремонт любых элементов с полным восстановлением оптических и электрических характеристик завода изготовителя без потери качества.

Почему при ремонте Led светильника 220 В необходимо учитывать температурные условия его эксплуатации

Обратите внимание на то, что нагрев полупроводниковых переходов развивается комплексным действием трех факторов:

  1. протеканием тока через цепочки светодиодов;
  2. нагревом драйвера;
  3. условиями внешней среды, когда светильник расположен в ограниченном пространстве с ухудшенными условиями теплоотвода.

Обычно последние два компонента являются основными причинами возникновения неисправностей. Их обязательно учтите.

Возрастание значения прямого тока через любой светодиод не только повышает световой поток источника, но и увеличивает тепловые потери, которые постепенно отклоняют реальную характеристику от идеальной прямой линии, ухудшая ее.

Нагрев же конструкции полупроводникового перехода значительно снижает общий ресурс светильника.

Чтобы предотвратить повышенный нагрев полупроводников, производители добавляют в конструкцию внутреннего теплоотвода внешние радиаторы охлаждения, которые дополнительно забирают повышенную температуру и рассеивают ее в атмосферу.

При ремонте поврежденных лед светильников необходимо обращать внимание на условия работы, которым они подвергались при эксплуатации. Вполне вероятно, что их учет позволит создать более совершенную конструкцию или продлить ресурс восстановленного источника.

Например, можно усилить внешний радиатор, сделать ему принудительную или естественную вентиляцию, что актуально для led ламп, встроенных в подвесные или натяжные потолки.

Ведь когда комфортная для человека температура на уровне пола достигает порядка +20 градусов, то в верхнем замкнутом пространстве она уже может вырасти до +30.

Если же эту лампочку поместить под навесом на улице, то зимний морозец в -30 на открытом воздухе сам создаст идеальные условия для ее охлаждения.

Учет возможного предела температурного нагрева и необходимости его ограничения — важное условие выполнения качественного ремонта светодиодных ламп.

Что надо знать про конструкцию драйвера для светодиодной и филаментной лампы 220 вольт при ее ремонте

Основная трудность, с которой сталкиваются производители — это ограниченный объем места, в котором необходимо вместить драйвер или блок питания светодиодов.

По этой причине они вынуждены:

  • применять упрощенные малогабаритные блоки питания типа ASD JCDR 5,5W GUS.3, собранные на отдельной плате;
  • или создавать дополнительную пластиковую вставку внутри колбы около цоколя и монтировать в этом увеличенном пространстве более совершенный драйвер. Один из вариантов его исполнения показываю ниже.

Как видите, схема драйвера, встроенного внутрь лед лампы 220 В, может значительно отличаться у каждой модели. Самый простой вариант имеет в своем составе:

  1. резистивно-емкостной делитель напряжения, который, кстати, выделяет дополнительное тепло при прохождении тока по активному сопротивлению;
  2. диодный мост;
  3. сглаживающий пульсации напряжения конденсатор;
  4. токоограничивающий резистор.
Shema-drayvera.png

Это самая проблемная схема для Led ламп не только потому, что она нагревает полупроводниковые переходы, но еще и не обеспечивает стабилизацию тока в них.

А они очень чувствительны даже к незначительным колебаниям напряжения.

Поэтому качественный драйвер создается со встроенной схемой стабилизации тока.

Если же при ремонте возникает мысль упростить модуль питания за счет перехода от габаритной и дорогой конструкции к дешевой, то следует понимать, что полупроводники сразу станут работать в экстремальном режиме и долго не проживут.

Как выполнить ремонт светодиодных ламп 220 В своими руками за 5 шагов: подробная инструкция в картинках

Для работы потребуется не хитрый инструмент домашнего мастера:

  • нож электрика, который можно заменить даже канцелярским;
  • паяльник электрический с набором для пайки;
  • мультиметр цифровой или даже старенький тестер;
  • небольшой набор электронных компонентов. Их вполне можно взять из других перегоревших led ламп аналогичной конструкции.

Шаг №1. Особенности вскрытия корпуса и внутреннего осмотра схемы

Любая лампочка имеет защитный кожух, изолирующий электрические детали от внешней среды, предотвращающий их повреждение. Для ремонта его необходимо вскрыть без разрушения, чтобы иметь возможность восстановления работоспособности.

Корпуса светодиодных ламп чаще всего выполняются из пластика. Хотя встречается стеклянная колба, что характерно не только для ламп Филамент. Тонкое стекло хрупкое, а в разбитом состоянии оно очень опасно: можно порезаться.

Как разобрать колбу из пластика

Вариантов сборки пластиковой конструкции довольно много. Корпус собирается из нескольких съемных частей и может крепиться:

  • защелками;
  • клеем типа силиконового;
  • комбинированным способом.

Перед началом разборки его просто надо внимательно осмотреть и прощупать руками места стыковок. Мне рекомендовали их прогревать феном: клей разрушается, позволяя легко отсоединять детали.

Но я этот способ не стал проверять. Допускаю, что нагрев может повредить некачественный пластик. Тогда корпус будет безвозвратно поврежден.

Места стыков следует аккуратно прорезать тонким лезвием острого ножа. Хорошо подходит обычный канцелярский, предназначенный для реза бумаги.

Располагать его надо по линии стыка. Избегать сильных нажатий. Пальцы держать в стороне.

Kak-vskryt-korpus-svetodiodnoj-lampy.png

После нескольких прорезов рекомендую осматривать состояние стыка.

Металлическую деталь с цоколя можно снять с помощью любого электрического патрона. Лампа вкручивается в него, а затем движениями рук вытягивается металлическая вкладка из пластикового основания.

Kak-snyat-czokol-svetodiodnoj-lampy.png

Однако надо учитывать, что там припаяны провода, подающие напряжение питания 220 вольт к драйверу питания.

Удаленный второй контакт лампочки также можно подклинить ножом и отсоединить колпачок. На нем тоже с обратной стороны припаян провод.

Вместо ножа удобно использовать инструмент стоматолога или сделать острый крючок. Им процарапывают стык склеенных деталей на небольшую глубину порядка двух миллиметров. Затем царапину углубляют по кругу несколько раз.

Периодически проверяют возможность разъединения деталей руками.

Обращайте внимание на способ крепления электронной платы с драйвером питания и светодиодами. Она тоже может быть приклеена силиконовым клеем, который будет мешать дальнейшей разборке. Его тоже следует удалить.

Как разобрать корпус из стекла

Попытки откручивания цоколя с помощью пассатиж, когда колба зафиксирована защитным покрытием в руке, обычно заканчиваются раздавливанием стекла и повреждением корпуса, который уже не подлежит восстановлению.

Относительно аккуратно можно срезать основание цоколя около пластиковой вставки фрезой бормашинки. Но, необходимо принять меры безопасности от получения травм стеклянной пылью.

Этот метод эффективнее, чем традиционный молоток или обмотка колбы толстой ниткой с керосином, последующим поджиганием, а затем резким охлаждением водой: стекло может лопнуть не в запланированном направлении.

Фреза позволяет сделать ровный срез, который обеспечит склейку колбы после ремонта.

Шаг №2. Как проверить целостность светодиодной сборки

По старой привычке некоторые мастера путают обычные светодиоды DIP типа и модули SMD.

Разница в том, что для современных осветительных приборов выпускаются готовые матрицы с несколькими полупроводниковыми кристаллами, чаще всего тремя и одним общим токоограничивающим резистором, а в светодиодных лентах они подключаются индивидуально.

Старые светодиоды DIP типа достаточно прозванивать мультиметром в режиме омметра или прозвонки.

Проверка SMD матрицы

Схема включения такого SMD модуля тоже имеет два внешних контакта.

К внутренним точкам коммутации доступа нет. Если пытаться зажечь эти светодиоды от цифрового мультиметра, то его выходного напряжения 2-3 вольта просто не хватит для проведения качественной проверки.

Поэтому такую работу выполняют батарейкой «Крона» или блоком питания с выходным напряжением 9-12 В.

Касаться выводов каждого SMD проводами от батарейки необходимо кратковременно, только для выявления момента начала вспышки: ток свечения ничем не контролируется. Не забывайте проверять полярность подключения.

Неисправный SMD модуль нужно заменить другим, который можно взять с аналогичной дефектной лампы, выбранной для разборки.

В сети интернет встречаются рекомендации по шунтированию выводов перегоревшего светодиода. Тогда свечение восстанавливается. Но, общее сопротивление цепочки полупроводниковых переходов при этом уменьшается, что увеличивает нагрузку на драйвер и ток через все полупроводники.

Когда он не справляется с возросшей мощностью, то повышенный ток снижает ресурс всей схемы. Эту особенность надо учитывать. Поэтому рекомендую избегать таких ситуаций или впаивать простые диоды с похожими электрическими характеристиками.

Светодиодная матрица сборки по технологии COB

Здесь используется принцип размещения внутри тела одной матрицы на объединенной подложке довольно большого числа полупроводниковых кристаллов. Их сверху покрывают общим слоем люминофора, улучшающим оптические характеристики.

Проверку исправности светодиодов типа COB лучше проводить питанием от стандартного драйвера.

Аналогичным образом проверяют исправность филаментных нитей ламп Filament.

Шаг №3. Оценка технического состояния и ремонт драйвера питания

Стабильное свечение SMD модулей создает только хорошо стабилизированный ток без пульсаций. Его сглаживают на всех блоках питания полярные электролитические конденсаторы.

Они имеют один существенный недостаток: при нагреве и длительной эксплуатации электролит внутри них высыхает, что приводит к потере емкости, нарушению режима работы.

При внутреннем осмотре схемы всегда визуально оценивайте строгость геометрической формы электролитов. Показываю такой дефект конденсатора на фотографии импульсного блока питания.

Малейшие отклонения от идеального состояния свидетельствуют о его неисправностях.

У проблемных драйверов рекомендую всегда замерять емкость сглаживающих конденсаторов цифровым мультиметром.

При наличии свободного места на корпусе электролит лучше заменить более емким. Тогда риск его будущего повреждения значительно снижается.

Резистор RC делителя напряжения тоже станет лучше работать с сопротивлением такого же номинала, но повышенной мощности — возникнет меньшее выделение тепла.

Выходные параметры блоков питания необходимо оценивать электрическими замерами на рабочем режиме под нагрузкой, а не на холостом ходу.

Проверка электрических характеристик драйвера питания, выполненного по безтрансформаторной схеме подключения, относится к опасным работам под напряжением. Заниматься ей должен только обученный персонал.

Драйверы с трансформаторами на вторичной стороне обмотки имеют менее опасное напряжение.

Нанесение тонкого ровного слоя термопасты между соприкасающимися составными частями радиатора охлаждения снижает нагрев, улучшает теплоотвод.

Шаг №4: Проверка оптических и электрических характеристик: о вреде пульсаций и перенапряжений

Самый вредный для здоровья параметр светодиодных ламп сети 220 вольт: пульсации света

Занимаясь ремонтом важно заботиться о конечной цели восстановления рабочих характеристик, учитывать влияние освещения на глаза человека, создавать наилучшие условия зрению.

Очень многие лед светильники, особенно бюджетных моделей, обладают вредными пульсациями, а то и мигают во включенном состоянии.

Проверить этот параметр в домашних условиях можно визуально или с помощью цифрового фотоаппарата, который сейчас встроен практически в каждый смартфон или мобильный телефон.

Вредные для глаза пульсации будут заметны. Для более точного их определения существуют специальные измерительные приборы.

Светодиодные лампы с излишними пульсациями после ремонта нельзя вводить в эксплуатацию. Их конструкцию необходимо дорабатывать за счет модернизации драйвера питания.

Как защитить светодиодную лампу от перенапряжений при аварийных режимах

Рекомендую обратить внимание на этот вопрос, ибо светодиоды очень чувствительны к повышению напряжения и могут быстро выйти из строя. Особенно актуально это требование для дешевых блоков питания.

Они просто не могут содержать все элементы, обеспечивающие качество работы импульсных блоков питания.

Снизить долю риска повреждения полупроводниковых переходов позволяет модульная защита, устанавливаемая в любом месте перед светильником.

Конденсатор, варистор и резистор — вот и все детали, которые потребуются для сборки такого модуля.

Заканчивая материал, подчеркиваю: прекрасно понимаю, что цена на светодиодные лампы сейчас уже не такая высокая, как раньше. Кому-то проще пойти в магазин, купить новую лампочку взамен сгоревшей и не мучиться с ремонтом.

Тем более, что филаментная лампа белорусского производства обладает хорошим качеством, светит равномерно во все стороны также, как с нитью накаливания, а по цене практически не отличается от Led ламп, продаваемых из Китая.

Однако всегда есть умельцы, желающие делать все самостоятельно. Я описал ремонт светодиодных ламп 220 В своими руками для тех людей, которые ищут информацию по этому вопросу и желают его выполнить.

Эту же тему хорошо излагает владелец видеоролика ElENBlog

Рекомендую его посмотреть и напоминаю, что у вас сейчас благоприятное время для того, чтобы задать вопрос или прокомментировать статью.

Используемые источники:

  • https://remonter.info/remont-nastenno-potolochnogo-svetodiodnogo-svetilnika/
  • https://100uslug.com/remont-svetodiodnogo-svetilnika-armstrong/
  • https://electrikblog.ru/remont-svetodiodnyh-lamp-220-v-svoimi-rukami-instrukcziya/

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации