<tabltd>
<divv>Добавить ссылку на обсуждение статьи на форумеРадиоКот >Схемы >Аналоговые схемы >Бытовая техника >
Добавить тег |
Сетевой выключатель блока питания, управляемый с «холодной» стороны
Автор: Antares, serega.starovoitov@mail.ru Опубликовано 11.04.2017 Создано при помощи КотоРед.
Добрый день, уважаемые коты! Задумал я как-то подсветить встроенные шкафы в своей квартире, ибо не хотелось каждый раз, собираясь утром на работу, будить жену светом в коридоре или собираться впотьмах. Казалось бы, блок питания, светодиодная лента, выключатель, пару метров провода, и всё, не надо ничего выдумывать — братья-китайцы пришлют по почте по сходной цене. Ан нет, хочется же, чтобы изюминка была, автоматика. В общем, прицепил я к каждой двери концевички, к которым подключил подсветку своих секций шкафа.
Всё бы хорошо, но чтобы такая схема работала, надо постоянно подавать питающее напряжение на ленты с концевичками, или заводить на концевички сетевое напряжение, и и уже через них включать блок питания. Первый вариант меня не устраивает от слова совсем. Постоянно круглосуточно держать блок питания под напряжением, хоть и без нагрузки, где-то в шкафу, на мой взгляд, совсем не безопасно. Да и что-то, но кушать он от сети будет, хоть и совершенно не нагружен большую часть времени. Второй вариант тоже не вариант — нужно тянуть по всему шкафу провод, тем более, заводить на него напряжение 220В. Нет, ну его… Пусть лучше сетевое напряжение будет где-то в одном месте с коробкой с блоком питания, а не по всему шкафу висит. В общем, на стыке таких мыслей и родилось это устройство. Чтобы долго и беспредметно не рассуждать о том, как оно работает, давайте взглянем на схему.
В исходном состоянии (дежурном режиме) нагрузки нет, или она настолько мала, что, при питании от батарейки GB1, не создаёт на резисторе R2 достаточное для открытия транзистора VT2 падение напряжения. Транзистор VT1 тоже закрыт, т.к. питание на блок питания и, соответственно, с блока питания не подаётся. Реле K1 обесточено.
При появлении на выходе нагрузки, падение напряжения на резисторе R2 увеличивается, и открывается транзистор VT2, который подаёт через диоды VD2, VD4 напряжение с батареи GB1 на обмотку реле K1. Конденсатор C1 облегчает пуск реле при разряженной батарейке. Реле замыкает свои контакты и подаёт питание на блок питания. На входе 12В появляется питающее напряжение. Оно через диод VD1 запитывает нагрузку. При этом, за счёт падения напряжения на диоде, открывается транзистор VT1 и запитывает обмотку реле через диод VD3 и резистор R3 от блока питания. Так как напряжение блока питания больше напряжения батареи, диод VD2 закрывается и отключает батарею от остальной схемы. Транзистор VT2 закрывается, но реле остаётся запитано от транзистора VT1.
При отключении нагрузки перестаёт течь ток через диод VD1, что закрывает транзистор VT1. Реле отключается и отключает от сети блок питания. Далее схема запитывается от батареи GB1 и находится в исходном состоянии.
Теперь поговорим немного об элементной базе. Плату я не разводил — использовал китайскую макетку 5х7см, т.к. схема довольно простая. Поэтому детали использовал выводные, но никто не запрещает развести плату и использовать SMD компоненты или поставить их на ту же макетку.
В качестве резисторов R1 , R3 и R4 я использовал какие-то безымянные аналоги МЛТ-0,25, резистор R2 — МЛТ-0,5 Резистор R5 — С5-37-5Вт — можно заменить на мощный резистор, хорошо переносящий импульсные перегрузки (например, цементные SQP). Изначально я коммутировал питание 100-ваттного импульсного блока питания напрямую, без резистора R5, но, несмотря на наличие в блоке питания пускового терморезистора, реле хватало на несколько включений, после чего его контакты заваривались, и реле не отключалось. После установки резистора R5 такие проблемы прекратились.
Конденсатор С1 — любой электролитический с ёмкостью 470-2200мкФ и допустимым напряжением больше выходного напряжения блока питания. Желательно подобрать с минимальным током утечки. Транзисторы VT1, VT2 — германиевые, структуры p-n-p, с допустимым напряжением коллектор-эмиттер больше выходного напряжения блока питания и допустимым током коллектора больше тока обмотки реле. Я использовал транзисторы МП26Б с напряжением коллектор-эмиттер 70В и током коллектора 150мА. При этом желательно использовать транзисторы с большим коэффициентом передачи тока. В принципе, можно использовать и кремниевые транзисторы, например, КТ361, КТ3107, и другие с требуемыми значениями допустимого напряжения коллектор-эмиттер и тока коллектора. Для VT2 каких-либо проблем нет, а для замены VT1 придётся вместо одного диода VD1 включать два диода последовательно, чтобы обеспечить достаточное для открывания кремниевого транзистора падение напряжения. При этом возрастут потери на этих диодах. Для уменьшения этих потерь один из диодов в цепочке можно заменить на диод Шоттки, но только один из двух, иначе транзистор VT1 не сможет открываться, и вся система будет работать рывками. В любом случае, следует подстроить напряжение на выходе блока питания так, чтобы на выходе данной схемы при подключенной нагрузке было необходимое напряжение.
Номинал резистора R2 выбирается таким образом, чтобы при питании от батареи GB1 и минимальной нагрузке на выходе, падение напряжения на этом резисторе составляло не менее 0,8В для германиевого транзистора VT2 и не менее 1,2В — для кремниевого. Резистор R3 подбирается таким образом, чтобы при питании схемы от блока питания, напряжение на обмотке реле К1 не превышало номинальное. Если реле при включении минимальной нагрузки срабатывает нечётко, следует уменьшить сопротивление резистора R4 или подобрать транзистор VT2 по коффициенту передачи тока. Сопротивление резистора R5 подбираем так, чтобы при максимальной нагрузке на блок питания, на нём рассеивалось не более 2Вт.
Не забываем про технику безопасности, т.к. на плате присутствует сетевое напряжение!
Все вопросы в Форум.
—>
Как вам эта статья? |
Заработало ли это устройство у вас? |
||
|
</divv></td>—> —> SELECTORNEWS — покупка, обмен и продажа трафика —> —>
С батарейным питанием все замечательно, кроме того, что оно кончается, а энергию надо тщательно экономить. Хорошо когда устройство состоит из одного микроконтроллера — отправил его в спячку и все. Собственное потребление в спящем режиме у современных МК ничтожное, сравнимое с саморазрядом батареи, так что о заряде можно не беспокоиться. Но вот засада, не одним контроллером живо устройство. Часто могут использоваться разные сторонние периферийные модули которые тоже любят кушать, а еще не желают спать. Прям как дети малые. Приходится всем прописывать успокоительное. О нем и поговорим.
▌Механическая кнопка Что может быть проще и надежней сухого контакта, разомкнул и спи спокойно, дорогой друг. Вряд ли батарейку раскачает до того, чтобы пробить миллиметровый воздушный зазор. Урания в них для этого не докладывают. Какой нибудь PSW переключатель то что доктор прописал. Нажал-отжал.
Вот только беда, ток он маленький держит. По паспорту 100мА, а если запараллелить группы, то до 500-800мА без особой потери работоспособности, если конечно не клацать каждые пять секунд на реактивную нагрузку (катушки-кондеры). Но девайс может кушать и поболее и что тогда? Приматывать синей изолентой к своему хипстерскому поделию здоровенный тумблер? Нормальный метод, мой дед всю жизнь так делал и прожил до преклонных лет.
▌Кнопка плюс Но есть способ лучше. Рубильник можно оставить слабеньким, но усилить его полевым транзистором. Например вот так.
Тут переключатель просто берет и поджимает затвор транзистора к земле. И он открывается. А пропускаемый ток у современных транзисторов очень высокий. Так, например, IRLML5203 имея корпус sot23 легко тащит через себя 3А и не потеет. А что-нибудь в DPACK корпусе может и десяток-два ампер рвануть и не вскипеть. Резистор на 100кОм подтягивает затвор к питанию, обеспечивая строго определенный уровень потенциала на нем, что позволяет держать транзистор закрытым и не давать ему открываться от всяких там наводок.
▌Плюс мозги Можно развить тему управляемого самовыключения, таким вот образом. Т.е. устройство включается кнопкой, которая коротит закрытый транзистор, пуская ток в контроллер, он перехватывает управление и, прижав ногой затвор к земле, шунтирует кнопку. А выключится уже тогда, когда сам захочет. Подтяжка затвора тоже лишней не будет. Но тут надо исходить из схемотехники вывода контроллера, чтобы через нее не было утечки в землю через ногу контроллера. Обычно там стоит такой же полевик и подтяжка до питания через защитные диоды, так что утечки не будет, но мало ли бывает…
Или чуть более сложный вариант. Тут нажатие кнопки пускает ток через диод на питание, контроллер заводится и сам себя включает. После чего диод, подпертый сверху, уже не играет никакой роли, а резистор R2 эту линию прижимает к земле. Давая там 0 на порту если кнопка не нажата. Нажатие кнопки дает 1. Т.е. мы можем эту кнопку после включения использовать как нам угодно. Хоть для выключения, хоть как. Правда при выключении девайс обесточится только на отпускании кнопки. А если будет дребезг, то он может и снова включиться. Контроллер штука быстрая. Поэтому я бы делал алгоритм таким — ждем отпускания, выбираем дребезг и после этого выключаемся. Всего один диод на любой кнопке и нам не нужен спящий режим 🙂 Кстати, в контроллер обычно уже встроен этот диод в каждом порту, но он очень слабенький и его можно ненароком убить если вся ваша нагрузка запитается через него. Поэтому и стоит внешний диод. Резистор R2 тоже можно убрать если нога контроллера умеет делать Pull-down режим.
▌Отключая ненужное Можно сделать и по другому. Оставить контроллер на «горячей» стороне, погружая его в спячку, а обесточивать только жрущую периферию.
Выделив для нее отдельную шину питания. Но тут надо учесть, что есть такая вещь как паразитное питание. Т.е. если вы отключите питание, например, у передатчика какого, то по шине SPI или чем он там может управляться пойдет питание, поднимется через защитные диоды и периферия оживет. Причем питания может не хватить для его корректной работы из-за потерь на защитных диодах и вы получите кучу глюков. Или же получите превышение тока через порты, как результат выгоревшие порты на контроллере или периферии. Так что сначала выводы данных в Hi-Z или в Low, а потом обесточивайте.
▌Выкидываем лишнее Что-то мало потребляющее можно запитать прям с порта. Сколько дает одна линия? Десяток миллиампер? А две? Уже двадцать. А три? Параллелим ноги и вперед. Главное дергать их синхронно, лучше за один такт.
Правда тут надо учитывать то, что если нога может отдать 10мА ,то 100 ног не отдадут ампер — домен питания не выдержит. Тут надо справляться в даташите на контроллер и искать сколько он может отдать тока через все выводы суммарно. И от этого плясать. Но до 30мА с порта накормить на раз два.
Главное не забывайте про конденсаторы, точнее про их заряд. В момент заряда кондера он ведет себя как КЗ и если в вашей периферии есть хотя бы пара микрофарад емкостей висящих на питании, то от порта ее питать уже не следует, можно порты пожечь. Не самый красивый метод, но иногда ничего другого не остается.
▌Одна кнопка на все. Без мозгов Ну и, напоследок, разберу одно красивое и простое решение. Его несколько лет назад набросил мне в комменты uSchema это результат коллективного творчества народа на его форуме.
Одна кнопка и включает и выключает питание.
Как работает:
При включении, конденсатор С1 разряжен. Транзистор Т1 закрыт, Т2 тоже закрыт, более того, резистор R1 дополнительно подтягивает затвор Т1 к питанию, чтобы случайно он не открылся.
Конденсатор С1 разряжен. А значит мы в данный момент времени можем считать его как КЗ. И если мы нажмем кнопку, то пока он заряжается через резистор R1 у нас затвор окажется брошен на землю.
Это будет одно мгновение, но этого хватит, чтобы транзистор Т1 распахнулся и на выходе появилось напряжение. Которое тут же попадет на затвор транзистора Т2, он тоже откроется и уже конкретно так придавит затвор Т1 к земле, фиксируясь в это положение. Через нажатую кнопку у нас С1 зарядится только до напряжения которое образует делитель R1 и R2, но его недостаточно для закрытия Т1.
Отпускаем кнопку. Делитель R1 R2 оказывается отрезан и теперь ничто не мешает конденсатору С1 дозарядиться через R3 до полного напряжения питания. Падение на Т1 ничтожно. Так что там будет входное напряжение.
Схема работает, питание подается. Конденсатор заряжен. Заряженный конденсатор это фактически идеальный источник напряжения с очень малым внутренним сопротивлением.
Жмем кнопку еще раз. Теперь уже заряженный на полную конденсатор С1 вбрасывает все свое напряжение (а оно равно напряжению питания) на затвор Т1. Открытый транзистор Т2 тут вообще не отсвечивает, ведь он отделен от этой точки резистором R2 аж на 10кОм. А почти нулевое внутреннее сопротивление конденсатора на пару с его полным зарядом легко перебивает низкий потенциал на затворе Т1. Там кратковременно получается напряжение питания. Транзистор Т1 закрывается.
Тут же теряет питание и затвор транзистора Т2, он тоже закрывается, отрезая возможность затвору Т1 дотянуться до живительного нуля. С1 тем временем даже не разряжается. Транзистор Т2 закрылся, а R1 действует на заряд конденсатора С1, набивая его до питания. Что только закрывает Т1.
Отпускаем кнопку. Конденсатор оказывается отрезан от R1. Но транзисторы все закрыты и заряд с С1 через R3 усосется в нагрузку. С1 разрядится. Схема готова к повторному включению.
Вот такая простая, но прикольная схема. Вот тут еще полно реализаций похожих схем. На сходном принципе действия.
ТолкованиеПеревод сетевой выключатель</dt>mains switch</dd>
Большой англо-русский и русско-английский словарь. 2001.
</dl>
Смотреть что такое «сетевой выключатель» в других словарях:
-
сетевой выключатель — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN line switchpower switchmains switch … Справочник технического переводчика
-
сетевой выключатель — tinklo jungiklis statusas T sritis automatika atitikmenys: angl. main switch vok. Netzschalter, m rus. сетевой выключатель, m pranc. interrupteur de réseau, m … Automatikos terminų žodynas
-
общий (сетевой) выключатель — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN master switch … Справочник технического переводчика
-
защита — 3.25 защита (security): Сохранение информации и данных так, чтобы недопущенные к ним лица или системы не могли их читать или изменять, а допущенные лица или системы не ограничивались в доступе к ним. Источник: ГОСТ Р ИСО/МЭК 12207 99:… … Словарь-справочник терминов нормативно-технической документации
-
ГОСТ Р 50829-95: Безопасность радиостанций, радиоэлектронной аппаратуры с использованием приемопередающей аппаратуры и их составных частей. Общие требования и методы испытаний — Терминология ГОСТ Р 50829 95: Безопасность радиостанций, радиоэлектронной аппаратуры с использованием приемопередающей аппаратуры и их составных частей. Общие требования и методы испытаний оригинал документа: 3.20 Аппаратура класса I аппаратура,… … Словарь-справочник терминов нормативно-технической документации
-
Компоненты — 2.7 Компоненты 2.7.1 ИЗОЛИРУЮЩИЙ ТРАНСФОРМАТОР Трансформатор, имеющий ЗАЩИТНОЕ РАЗДЕЛЕНИЕ между входной и выходной обмотками. 2.7.2 РАЗДЕЛИТЕЛЬНЫЙ ТРАНСФОРМАТОР Трансформатор, у которого входные обмотки отделены от выходных обмоток, по крайней… … Словарь-справочник терминов нормативно-технической документации
-
ГОСТ Р МЭК 60065-2002: Аудио-, видео- и аналогичная электронная аппаратура. Требования безопасности — Терминология ГОСТ Р МЭК 60065 2002: Аудио , видео и аналогичная электронная аппаратура. Требования безопасности оригинал документа: 2.6 Защита от поражения электрическим током, изоля ция 2.6.1 КЛАСС I Конструкция аппарата, в которой защита от… … Словарь-справочник терминов нормативно-технической документации
-
Netzschalter — tinklo jungiklis statusas T sritis automatika atitikmenys: angl. main switch vok. Netzschalter, m rus. сетевой выключатель, m pranc. interrupteur de réseau, m … Automatikos terminų žodynas
-
interrupteur de réseau — tinklo jungiklis statusas T sritis automatika atitikmenys: angl. main switch vok. Netzschalter, m rus. сетевой выключатель, m pranc. interrupteur de réseau, m … Automatikos terminų žodynas
-
main switch — tinklo jungiklis statusas T sritis automatika atitikmenys: angl. main switch vok. Netzschalter, m rus. сетевой выключатель, m pranc. interrupteur de réseau, m … Automatikos terminų žodynas
-
tinklo jungiklis — statusas T sritis automatika atitikmenys: angl. main switch vok. Netzschalter, m rus. сетевой выключатель, m pranc. interrupteur de réseau, m … Automatikos terminų žodynas
Используемые источники:
- https://www.radiokot.ru/circuit/analog/home/58/
- http://easyelectronics.ru/vklyuchit-vyklyuchit-sxemy-upravleniya-pitaniem.html
- https://dic.academic.ru/dic.nsf/eng_rus/288423/сетевой
</tr></tabltd>