Андрей Смирнов
Время чтения: ~15 мин.
Просмотров: 15

Стабилизатор напряжения на полевом транзисторе — схемотехника

Всем давно известно, что без нормального регулируемого блока питания не возможно запустить ни один девайс сделанный своими руками. Ведь блок питания это основа радиолюбительской лаборатории, поэтому в этой статье я расскажу, как сделать простой регулируемый блок питания из доступных деталей всего на двух транзисторах. На этом рисунке изображена простая для изготовления схема регулируемого блока питания.

Схема регулируемого блока питания на транзисторах

Скачать схему регулируемого блока питания 

Эта схема очень неприхотлива в радиодеталях по этому, собрать её может каждый начинающий радиолюбитель практически из того, что имеется под рукой. Диодный мост Br1 пойдет практически любой с силой тока не менее 3А. Если нет диодного моста, замените его подходящими диодами. Конденсатор С1 можно заменить любым от 1000 мкФ до 10 000 мкФ. Переменный резистор Р1 от 5 до 10 кОм. Транзистор Т1 КТ815, BD137, BD139 транзистор Т2 КТ805, КТ819, TIP41, MJE13009 и многие другие советские и импортные аналоги, подбираются согласно требуемой нагрузке и мощности источника питания.

Диод D1 с силой тока не менее 3А, можно вообще заменить перемычкой, он защищает конденсатор C2 от переполюсовки при подключении к блоку питания аккумулятора. Источником питания для этой схемы может служить любой трансформатор от 12 до 30 вольт. Для своего блока питания я использовал тороидальный трансформатор от музыкального центра с двумя последовательно соединенными обмотками по 13,5В и силой тока 3,5А. После выпрямления напряжения на выходе получилось 30 вольт.

Все детали блока питания я, как всегда разместил на печатной плате размером 6,5 на 4,5 см. При установке транзисторов обратите внимание на цоколевку. Например у транзистора КТ819 ножки располагаются так ECB, а у транзистора MJE13009 так BCE, по этому транзисторы лучше всего соединить с платой небольшими кусочками провода и тогда у вас не возникнет проблем с правильной установкой транзисторов на радиаторе.

Печатная плата регулируемого блока питания 0-30В

Скачать печатную плату регулируемого блока питания 0-30В в формате lay 

Два транзистора установите на одном радиаторе без изоляционных прокладок потому, что коллекторы транзисторов на схеме соединяются вместе. Не забудьте места крепления транзисторов смазать термопастой. Диодную сборку желательно закрепить на небольшом радиаторе, она тоже не слабо нагревается. Для контроля выходных характеристик желательно установить универсальный китайский измерительный прибор (УКИП) обозначенный на схеме V/A1.

Все компоненты блока питания я разместил в стандартном корпусе от компьютерного блока питания. Только из за большого размера тороидального трансформатора от музыкального центра вентилятор пришлось разместить снаружи, но это на технические характеристики блока питания особо не влияет.

Благодаря мощному 3,5 амперному тороидальному трансформатору этот универсальный регулируемый блок питания я использую для питания различных самоделок и в качестве зарядного устройства для небольших аккумуляторов.

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том как работает регулируемый блок питания.

23 декабря 2019, 02:45 | ИБП, системы охлаждения и сетевые фильтры

Лабораторные блоки питания отличаются от обычных возможностью регулировки выходных параметров (напряжения и тока защиты) и, дополнительно, могут напряжение и ток измерять и доводить до сведения пользователя.

Благодаря этому пользователь (обычно — радиолюбитель или специалист по настройке или ремонту техники) может не разводить у себя на столе гору разнообразных блоков питания и измерителей тока и напряжения, а пользоваться одним-единственным прибором (что и отображено в заголовке обзора).

Сегодня мы познакомимся с лабораторным блоком питания Longwei LW-K3010D, рассчитанным на максимальное напряжение выхода 30 Вольт при максимальном выходном токе 10 Ампер (обе эти цифры являются частью наименования блока).

Помимо регулировки выходного напряжения (от нуля!), блок позволяет регулировать и величину тока срабатывания защиты (тоже от нуля).

Блок был приобретён на AliExpress, цена на момент составления обзора составляла 2800 российских рублей ($43).

Проверить актуальные цены с возможностью доставки из России можно здесь или здесь (варианты до $50 можно считать приемлемыми, а если окажется выше — то лучше поискать другие варианты).

Технические характеристики лабораторного блока питания Longwei LW-K3010D
Тип блока Импульсный
Выходное напряжение 0 — 30 В
Регулировка тока защиты  0 — 10 А
Измеряемые параметры  Ток, напряжение (3-значная индикация)
 Вес 1.34 кг
 Габариты 233 x 71 x 159 мм

С пульсациями, стабильностью и прочим будем разбираться по ходу обзора.

Дизайн и внутреннее устройство лабораторного блока питания LW-K3010D (30 В, 10 А)

Вид спереди:

f64c567c46.jpg

Боковая поверхность содержит множество отверстий для вентиляции.

Лицевую панель рассмотрим более детально:

Сверху расположены трёхзначные индикаторы напряжения и тока, далее вниз — обычная механическая кнопка ВКЛ/ВЫКЛ, переменники настройки выходного напряжения и тока защиты, пара светодиодов (зелёный — нормальная работа, красный — перегрузка), и, наконец, три выходных гнезда для подключения кабелей со штырями или клеммами.

Переменный резистор установки напряжения — многооборотный, и им, действительно, можно при достаточной аккуратности установить выходное напряжение с точностью до 0.1 Вольт.

Переменник установки тока защиты — обыкновенный, но от него и не требуется высокой точности.

Два крайних гнезда внизу (чёрное и красное) предназначены для подключения нагрузки, а среднее (желтое) — со схемой блока не соединяется, а соединяется с нулевым проводом в разъёме питания на задней стенке блока.

Соответственно, при питании блока от двухпроводной бытовой сети этот контакт получается ни с чем не соединённым.

Посмотрим на лабораторный блок питания сзади:

Здесь, конечно. сразу бросается в глаза решетка вентилятора.

Вентилятор здесь не включается сразу «на всю катушку» при включении блока питания. Он начинает вращаться только по мере необходимости, т.е. при нагреве блока.

Благодаря этому достигаются сразу две цели: и вентилятор не надоедает непрерывным жужжанием, и блок питания не перегревается.

Кстати, вентилятор работает на вдув воздуха. Не забывайте хотя бы раз в год чистить блок от пыли!

Под решеткой вентилятора — переключатель 110/220 Вольт. Перед первым включением проверьте, что он — в правильном положении.

Под ним — почти обычный питательный разъём, как в компьютере.

Но он — не совсем обычный: в его нижней части расположен лоток с плавким предохранителем.

Также на задней панели есть маркировка, в том числе со ссылкой на сайт производителя. Но на момент обзора сайт не работал, показывал «ошибку 522»; так что этот ссылку на этот сайт приводить не буду.

Снизу блока питания — традиционные 4 резиновых ножки:

Ножки — хорошие, не скользят.

Глянем, для порядка, на «комплектуху», прилагаемую к блоку питания (сетевой шнур не показан):

Кабель для подключения нагрузки имеет «тропическую» конфигурацию — с «бананами» и «крокодилами».

Руководство пользователя содержит полезные сведения в части того, как настроить ток защиты.

Кратко, это делается так:  установить напряжение 3-5 V, выкрутить регулировку тока на ноль, сделать «козу» (короткое замыкание) на выходе, регулировкой тока установить желаемый ток защиты, убрать короткое замыкание.

Теперь — делаем разборку блока питания. Проблемы это не представляет, крышка держится на пяти винтах без всяких хитростей.

 Смотрим на главную плату лабораторного блока питания LW-K3010D:

 Схема блока питания — весьма и весьма непроста. Ограничусь кратким описанием только силовой части.

Напряжение сети проходит через фильтр с индуктивными элементами и ёмкостями и поступает на мост KBU810 (1000 В, 8 А), затем — на два «больших» электролита 560 мкФ 200 В.

В качестве мощных ключевых транзисторов применены MOSFET-ы FQPF10N60C.

Их основные характеристики: предельное напряжение 600 В, предельный ток 9.5 А, максимальная мощность 50 Вт, сопротивление в открытом состоянии  — не более 0.73 Ом.

Они установлены на радиаторы; один из радиаторов установлен на плате кривовато (не трогаем, а то сломаем!).

В низковольтной силовой части применён сдвоенный диод Шоттки MBR30200CT с радиатором (макс. обратное напряжение 200 В, макс прямой ток — 15 А на каждое плечо). Далее — фильтры из индуктивностей и шести электролитических кондёров.

 Интересно, что плата содержит маркировку LW-K305D (в левом верхнем углу на фото). Вероятно, что точно такая же плата используется и в блоке питания K305D (30 В, 5 А).

Возможно, более слабый блок отличается более слабой силовой частью. А может, и ничем не отличается, кроме настроек. 🙂

 Ещё одна небольшая плата в блоке питания прикреплена к лицевой панели. Она отвечает за измерения и индикацию.

Попытаемся её рассмотреть, не откручивая.

На этой маленькой плате видим две маленькие микросхемки, отвечающих за измерение напряжения и тока.

А самое главное на этой плате — два синеньких многооборотных резистора-подстроечника, с помощью которых можно подстроить показания встроенного вольтметра и амперметра, если они окажутся неточными.

Эти подстроечники обозначены на плате VRV1 (для напряжения) и ARV2 (для тока).

 Забегая вперёд, скажу, что необходимости крутить подстроечник напряжения не было; а вот подстроечник тока пришлось слегка крутануть. Но это — потом, а пока досматриваем картинки вскрытия блока.

Последняя из картинок «потрохов» блока — вид главной платы с обратной стороны:

Здесь нет, в общем-то, ничего особо интересного.

Видна пара разрезов на плате, помогающих обеспечить электробезопасность устройства.

Вверху видна пара керамических резисторов, которая, видимо, просто не поместилась на основной стороне платы.

На этом можно завершить рассказ о конструкции и перейти непосредственно к тестам.

Технические испытания лабораторного блока питания LW-K3010D (30В 10А)

 Испытания начинаем с традиционного так называемого «опробования» — контроле общей работоспособности и проверки, нет ли где существенных погрешностей.

Для этого нагружаем блок питания на не очень большую нагрузку, и проверяем сначала максимальное выдаваемое блоком напряжение:

Здесь с чувством глубокого удовлетворения отмечаем, что показания собственного вольтметра блока питания и внешнего прибора совпали «тютелька в тютельку».

Дальше ещё более развиваем достигнутое чувство глубокого удовлетворения и отмечаем, что лабораторный блок питания смог отдать напряжение даже выше, чем заявлено в его технических данных (32 В при заявленных 30 В).

 Теперь устраиваем аналогичную проверку для контроля измерения тока:

А вот тут уже вышла нестыковочка в показаниях: собственный амперметр блока питания показал 1.48 Ампера, а внешний прибор — только 1.38 Ампера.

Пришлось открывать блок питания и подкрутить синенький подстроечник ARV2 до тех пор, пока показания не совпали.

Все дальнейшие тесты проведены уже с подстроенным собственным амперметром блока питания.

 Сейчас — самый главный тест: выдаст ли блок питания заявленные 10 Ампер?!

10 Ампер, ведь это, знаете ли, очень серьёзный ток!

Поскольку мощность рассеяния в таком режиме ожидалась около 300 Вт, то тут никакая китайская электронная нагрузка на «прокатывала».

Пришлось для охлаждения нагрузки (резистора 3 Ом) использовать дополнительное специальное оборудование: стакан из комплекта «Bacardi» и тарелочку с голубой каёмочкой. В стакан была налита вода примерно наполовину.

Максимальный ток оказался 9.63 Ампера, т.е. чуть ниже заявленного (10 А). При попытке ещё больше повысить ток он уже не повышался, а ограничивался на этой величине. Кроме того, загорался красный светодиод — превышение тока защиты.

Расхождение с заявленным максимальным током оказалось небольшим — всего 3.7%. В связи с этим всё-таки ставим «зачёт» блоку питания по выполнению заявленного максимального тока.

Через пару минут работы в таком режиме вода в стакане закипела:

На этом данный эксперимент был завершен.

 Теперь приступаем к более тонким экспериментам — проверке на пульсации выходного напряжения при разной нагрузке.

 Сначала — проверка при токе в 1 Ампер (лёгкая нагрузка):

В целом всё — довольно благообразно; а короткие «иголки» на осциллограмме, вероятнее всего, не «всплески» выходного напряжения, а просто помехи, попавшие на кабели.

Однако уже при токе в 2.8 Ампера осциллограмма стала меня беспокоить:

Частота пульсаций составила чуть выше 2 кГц. Это — довольно странная величина, поскольку не похожа ни на частоту питающей сети, ни на частоту импульсного преобразователя.

Форма пульсаций — почти идеальный синус.

И при токе в 9 Ампер (близко к максимуму) началась просто какая-то вакханалия пульсаций:

Величина пульсаций колебалась на уровне 0.6 — 0.7 Вольт.

«Это провал», — подумал Штирлиц.

А вот как выглядели эти пульсации в более мелком масштабе по шкале времени:

В надежде как-то снизить размер пульсаций я полез в свой ящик с радиобарахлом и достал оттуда самый ёмкий электролит, который только у меня был, — 10000 мкФ.

Но реакция на его подключение оказалась совершенно непредсказуемой: пульсации не просто снизились, а полностью исчезли, «от слова совсем»:

 Повторение эксперимента полностью подтвердило: при подключении ёмкого электролита параллельно выходу пульсации не просто уменьшаются, а исчезают. Эффект оказался устойчив даже при снижении ёмкости дополнительного внешнего электролита до 1000 мкФ (ниже не пробовал).

Что это было? Вероятнее всего, какой-то реальный резонанс в цепи выходного фильтра; или же «виртуальный» резонанс сквозь все цепочки обратной связи в блоке питания. Подключение дополнительного конденсатора вынесло его частоту за те пределы, где его могли «раскачать» внутренние процессы блока питания; и он исчез.

Но этот спасительный электролитический конденсатор внутрь блока питания встраивать я не стал.

Я философски рассудил, что в устройствах, для которых важно качество питания, и так уже бывает напаяно электролитов по самое некуда.

А об устройствах, менее чувствительных к качеству питания, вообще нет повода беспокоиться.

В итоге я оставил блок питания «как есть» и собираюсь и далее им пользоваться на благо себя, любимого (как мне хочется верить).

После этих философских рассуждений позвольте перейти к последнему эксперименту — определению реакции на короткое замыкание («козу») и выход из него.

При выходе из короткого замыкания блок питания ведёт себя правильно: напряжение нарастает более-менее плавно; и, главное — никаких выбросов вверх выше установленного номинала напряжения нет!

Какого-то заметного температурного ухода выходного напряжения обнаружить не удалось. Возможно, это связано с тем, что блок сам по себе хорошо борется с повышением температуры (включает вентилятор, когда надо).

 Окончание симпозиума

Теперь пора сделать выводы из всей проделанной работы.

Начну с того, что блок лабораторный блок питания LW-K3010D не только выполнил, но и перевыполнил заявленные параметры (по напряжению перевыполнил на 2 Вольта — вместо 30 В осилил целых 32 В). Лишние два Вольта всегда пригодятся!

Есть у него проблема с пульсациями, но она — решаемая.

Как я пояснял в обзоре, я решил не бороться с пульсациями, а оставить всё «как есть». Но радиолюбители-перфекционисты могут для успокоения совести установить внутрь блока питания электролитический конденсатор для полного гашения пульсаций. Только надо помнить, что его номинальное напряжение должно быть строго выше 32 В.

 В качестве особого преимущества этого блока питания отмечу, что, благодаря узкой вертикальной конструкции он занимает на столе очень мало места. Собственно, это и была одна из причин его выбора (главная причина — это всё-таки его высокая выходная мощность).

И, на всякий случай напомню, где его можно купить: с возможностью доставки из России (или из Китая — по выбору) можно здесь или здесь . Если где-то точно такой же блок вдруг найдётся дешевле, то тоже можно брать — товар одинаковый.

В заключение поздравляю всех с наступающим Новым Годом! Успехов, здоровья и всяких благ!

Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.

Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ

Скачать схему регулируемого блока питания на LM317

Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.

Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.

А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.

Схема регулируемого блока питания с защитой от КЗ на LM317

Скачать схему регулируемого блока питания с защитой от КЗ на LM317

Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.

Печатная плата регулируемого блока питания на регуляторе напряжения LM317

Скачать печатную плату регулируемого блока питания на LM317

Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.

Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.

А теперь самое интересное…Испытания блока питания на прочность.

Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.

Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.

Схема подключения вентилятора к блоку питания

Скачать схему подключения вентилятора к блоку питания

Что будет с блоком питания при коротком замыкании?

При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.

Радиодетали для сборки регулируемого блока питания на LM317

  • Стабилизатор напряжения LM317
  • Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
  • Конденсатор С1 4700mf 50V
  • Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
  • Переменный резистор Р1 5К
  • Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками

Используемые источники:

  • https://sdelaitak24.ru/%d0%bf%d1%80%d0%be%d1%81%d1%82%d0%be%d0%b9-%d1%80%d0%b5%d0%b3%d1%83%d0%bb%d0%b8%d1%80%d1%83%d0%b5%d0%bc%d1%8b%d0%b9-%d0%b1%d0%bb%d0%be%d0%ba-%d0%bf%d0%b8%d1%82%d0%b0%d0%bd%d0%b8%d1%8f-0-30%d0%b2/
  • https://www.ixbt.com/live/filters/laboratornyy-blok-pitaniya-longwei-lw-k3010d-odin-za-vseh.html
  • https://sdelaitak24.ru/%d1%80%d0%b5%d0%b3%d1%83%d0%bb%d0%b8%d1%80%d1%83%d0%b5%d0%bc%d1%8b%d0%b9-%d0%b1%d0%bb%d0%be%d0%ba-%d0%bf%d0%b8%d1%82%d0%b0%d0%bd%d0%b8%d1%8f-%d1%81%d0%b2%d0%be%d0%b8%d0%bc%d0%b8-%d1%80%d1%83%d0%ba/

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации