Андрей Смирнов
Время чтения: ~14 мин.
Просмотров: 1

Все виды преобразователей напряжения

Тема: как сделать, спаять схему для получения высокого напряжения самому.

Тема о различных устройствах, повышающих напряжение до величин свыше 1000 вольт весьма популярна. Эти высоковольтные преобразователи можно использовать для таких целей как электрические зажигалки, ионизаторы воздуха, источники питания для газоразрядных ламп, электрошокеры, различные светящиеся шары (внутри которых играют молнии) и т.д. И вовсе нет особой необходимости в том, чтобы собирать преобразователь высокого напряжения по какой-то сложной схеме. Допустим я сделал очень простой вариант такого устройства, которое содержало в себе всего три детали: трансформатор с ферритовым Ш-образным сердечником, полевой транзистор и резистор.

242_1.jpg

В этой схеме простого высоковольтного преобразователя, что был собран своими руками, основные силы уходят на намотку повышающего трансформатора. Сам трансформатор был снят с платы обычного компьютерного блока питания. Также такие трансформаторы можно найти в различной современной технике, где имеются блоки питания с высокочастотными преобразователям. Либо его можно просто купить на радиорынке, цена относительно низкая.

242_2.jpgМагнитопровод такого высокочастотного трансформатора должен быть из феррита (подойдет любая марка). У меня нормально работал этот преобразователь на трансформаторе Ш-образной формы (должна подойти и П-образная форма), в то время как на круглом сердечнике схема не запускалась. Размеры трансформатора в большей степени зависят от того провода, что будет намотан на магнитопровод (диаметра, количества витков, изоляционных слоев между обмотками). Допустим свой первый трансформатор я намотал до полного его заполнения, а в итоге оказалось, что было недостаточным количество витков во вторичной обмотке. Пришлось брать трансформатор чуть больших размеров. Что касается мощности таких высокочастотных трансформаторов, то ее скорее можно назвать резиновой. То есть, электрическая мощность, которую можно получить из подобного транса, напрямую зависит от рабочей частоты тока, что подается на входные обмотки. Повышая только лишь частоту тока, оставляя размеры трансформатора прежними, можно увеличивать его общую мощность.

Если вы сняли с устройства, достали где-нибудь подходящий трансформатор с ферритовым сердечником то его нужно будет перемотать. Обычно магнитопровод этих трансов между собой склеен. Банальные попытки просто соединить сердечник путем механического воздействия (отковыривать ножом, отверткой и т.д.) в большинстве случаев приводят к раскалыванию феррита. Правильнее будет сначала имеющийся трансформатор опустить на полминуты в кипящую воду. После этого сцепление клея ослабевает и части ферритового сердечника легко отсоединяются друг от друга без повреждений.

242_3.jpgТеперь что касается самой перемотки трансформатора под наш самодельный высоковольтный преобразователь. Итак, первичная обмотка содержит 8 витков с отводом от середины (диаметр провода около 0.8-1,5 мм). Ее проще наматывать шиной из нескольких проводов, допустим берем 6 проводов диаметром по 0.4 миллиметров каждый. Все эти провода аккуратно и равномерно наматываем на каркас трансформатора. Мотаем 4 витка. Далее выходящие концы этих проводов разделяем по 3 штуки, спаивая их между собой. В общем получается что мы имеем первичку, состоящую из двух проводов, каждый из которых имеет 4 витка, а каждый провод состоит из трех жил, соединенных параллельно между собой. Начало одной (любой) первичной обмотки соединяем с концом другой первичной обмотки. Это соединение и будет отводом от середины, образуя среднюю точку.

Для изоляционного отделения обмоток можно использовать ленту обычного скотча. Намотали первичную обмотку, нанесли изоляционный слой в несколько витков. Поверх первичной начинаем мотать вторичную, повышающую обмотку высоковольтного трансформатора. Также отделяем слоем скотча. К примеру, один слой вторичной обмотки содержит у меня по 200 витков, после чего изолирую одним витком скотча. Далее мотаю следующий слой в 200 витков. Всего вторичная обмотка должна содержать около 1600 витков провода 0,1 мм. Это получается 8 слоев по 200 витков каждый. Следим, чтобы витки различных слоев были отдалены друг от друга на некоторое расстояние (примерно 0.4 мм), что уменьшает вероятность электрического пробоя.

После завершения намотки вставляем в каркас части ферритового сердечника. Для их фиксации достаточно обмотать несколькими витками ленты скотча. Вот и все, наш высоковольтный трансформатор готов. Теперь осталось к нему припаять полевой транзистор и резистор. Подсоединяем питание. В моем случае высоковольтный преобразователь хорошо начинал работать от напряжения 5 вольт. Просто сам полевой транзистор, который я поставил, имеет пороговое напряжение 2-4 вольта. Путем подбора полевых транзисторов (имеющих другие пороговые напряжения) можно уменьшить величину питающего напряжения, к примеру, запитать схему от обычного литиевого аккумулятора, получив в итоге компактную электрическую зажигалку для газа.

P.S. В моем случае при напряжении питания в 5 вольт схема высоковольтного преобразователя, что сделан был своими руками, потребляла ток 0,5 и более ампер. Полевой транзистор начинал греться. Следовательно, чтобы избежать его чрезмерного перегрева к нему нужно прикрепить небольшой охлаждающий радиатор. Так что после сборки данной схемы обратите внимания на нагрев транзистора, при необходимости установите радиатор подходящих размеров.

Рекомендуемый материал

Куда далее перейти на этом сайте ⇙

»  Главная страница » Каталог всех статей » В начало страницы

Всем привет. Целью этого проекта было создание генератора высокого напряжения, а по совместительству индукционного нагревателя значительной мощности, причём использоваться должна была очень простая схема и легкодоступные компоненты. Многие новички ищут способ эффективного увеличения мощности обычных двухтранзисторных ZVS и эта публикация в этом поможет.

Инвертор от Mazzilli, известный как «ZVS», пользуется популярностью среди любителей HV благодаря своей простоте и эффективности. Схема, которую здесь представляем, — ее модификация, чтобы передавать больше мощности.

Что касается теоретического описания работы инвертора, ему уже посвятили в интернете довольно много статей, которые всесторонне объясняют как теорию, так и практику.

Схема принципиальная ZVS преобразователя

Схема высоковольтного преобразователя на импульсных трансформаторах

Как видите, для удобства всё было разделено на два модуля. Такой подход позволяет легко подключать различные трансформаторы вместе с оптимально подобранными резонансными емкостями.

  1. Первый модуль — это драйвер с источником питания. Он имеет правильную электронику инвертора, а также встроенный выпрямитель и фильтр, который позволяет напрямую подключать устройство к сетевому трансформатору. Здесь использованы транзисторы IRFP260 и массивные дроссели с высоким током насыщения, что гарантирует надежную работу инвертора даже с высокой мощностью. Большой электролитический конденсатор видимый на фото, используется для фильтрации источника питания, он на 10000 мкФ 250 В. Это кажется нелогичным, но выбрали его из-за очень низких ЭПС и больших номинальных токов, что весьма важно в таких системах.
  2. Второй модуль состоит из двух параллельно подключенных строчников с резонансной батареей конденсаторов. Обе обмотки имеют по 8 витков, а резонансная батарея состоит из нескольких конденсаторов общей емкостью около 2,4 мкФ. Это позволило уменьшить импеданс резонансной цепи за счет увеличения количества мощности до уровня, на котором основным ограничением была текущая эффективность подачи всего сетевого трансформатора. Оба трансформатора (ТВС) практически идентичны, что очень важно — требуется даже распределение нагрузки, иначе инвертор может выйти из нормальной генерации, что приводит к сжиганию транзисторов.

Обмотка образована скручиванием 16 эмалевых проводов 0.4 мм, а затем обертыванием всего изоляционной лентой для механической защиты. Это значительно уменьшает скин-эффект и связанные с ним потери — ранее использовались обмотки, выполненные из обычных толстых проводов, под нагрузкой они нагреваются до температуры, при которой изоляция начала дымить. Эти же лишь немного теплые, даже после долгой работы схемы.

Испытания преобразователя в действии

Инвертор способен выдерживать 10 минут непрерывной работы, после чего трансформаторы начинают требовать охлаждения. Транзисторы не нагреваются слишком сильно — радиаторы остаются почти холодными. Большая часть тепла выделяется на выпрямителе моста, который может неплохо нагреваться — на нем тоже большой радиатор.

Полезное:  Контроллер вентиляции в туалете или ванной

Инвертор способен выдавать большие разряды благодаря значительной эффективности тока. Максимальная длина растянутой молнии составляет чуть более 20 см.

Также покажем сигналы осциллограмм: Первый это синусоида на LC-схеме без зажженной дуги. Последний скриншот показывает последовательность импульсов на одном из полевых ключей.

Индукционный нагреватель железа

Эта схема, как и любой такой резонансный преобразователь, может использоваться как небольшой индукционный нагреватель металлов. Чтобы сделать это, просто соберите индуктор в виде небольшой катушки, соединенный параллельно с резонансной батареей конденсаторов емкостью 2-4 мкФ. Вот как выглядит нагрев металла:

О транзисторах для генератора

IRFP260 — типичный выбор для этого типа инвертора. Данная схема питается от 27 В переменного тока, что означает около 36 В постоянного тока после выпрямления и фильтрации. Их применение гарантирует стабильную работу до 50 В постоянного тока, вы конечно можете повышать вольтаж еще дальше, но это рискованно.

Что касается транзисторов IRF740, они подходят только для меньших мощностей из-за небольших Id и больших Rds, что подразумевает меньшую силу тока и намного более высокие потери. IRFP260 имеет значительно меньшие Rds и большую предельную мощность рассеивания тепла, поэтому он обеспечивает большую текущую долговечность и меньшие потери проводимости. Их можно купить в большинстве интернет-магазинов или на Али по 6$ за 10 шт. Можно использовать и IRP240, но вы сможете прокачать через него гораздо меньшие токи.

Использование транзисторов под более высокое напряжение не является особенно целесообразным, так как они имеют более высокие Rds (сопротивление перехода), что приводит к увеличению потерь и в районе 60 … 70 В постоянного тока транзисторная управляющая связь не срабатывает, вызывая уничтожение транзисторов пробоем. Поэтому предлагаем остаться на более низких напряжениях питания — до 50 В постоянного тока. Вместо дальнейшего увеличения напряжения лучше уменьшить импеданс резонансного контура, чтобы инвертор мог потреблять больше энергии без увеличения напряжения.

Удалось запустить преобразователь используя источник питания 12 В / 200 Вт — разряды были эффективными, но не настолько впечатляющие. Искра была около 10 см, толстая и пушистая.

В целом питание обеспечивается группой трансформаторов, выдающих 27 В переменного тока. Потребление тока на максимальной растянутой высоковольтной дуге достигает 30 А.

Высоковольтный модуль зажигания применяется для самозащиты и изготовления современной техники. Зная последовательность работ, можно изготовить такое устройство собственными руками. Как это сделать и где можно найти готовые изделия, расскажет эта статья.

Описание

Высоковольтный модуль – это блок с 4 проводами, 2 из которых необходимы для подключения питания. Как видим, ничего сложного.

Если нужен высоковольтный модуль, его можно приобрести в интернет–магазине или изготовить собственными руками. Готовое устройство работает от пальчиковых литиевых батареек с 3,6 до 6 вольт на входе. На выходе может выдаваться мощность в 400 вольт.

Генератор высокого напряжения имеет в составе 4 провода. Для проверки качества покупки можно взять модуль литий-ионного аккумулятора на 3,7 вольта. По параметрам между электродами должна пролетать искра до 2 см.

Такие работы необходимо производить особенно аккуратно. Разведите провода высоковольтного модуля и подсоедините их к аккумулятору. При подаче питания отмечается звуковой эффект в виде свиста. Также произойдет разряд, длина воздействия которого — 1,5-2 см.

Как это работает

Демонстрация работы модуля высоковольтного преобразователя может производиться с использованием генератора. Для этого необходимо питание от бесперебойника на 12 вольт и лампа на 25 Вт. При подсоединении проводов она горит полным накалом.

1993048.jpg

Описание изготовления высоковольтных генераторов

Умение мастерить выручает не раз в жизни. К примеру, хорошие высоковольтные генераторы стоят достаточно дорого. К тому же их сложно достать. Но ведь высоковольтный модуль успешно можно изготовить своими руками. Для этого понадобится шаговый двигатель, который может прекрасно работать в режиме генерации.

Прямо на вал шаговика присоединяют ручку, вращают ее и заряжают телефон в походных условиях. Эту зарядку можно изготовить своими руками за несколько минут.

Усовершенствование моделей

Есть множество подобных изобретений, но мощность их недостаточно высока. Для зарядки телефона нужно как минимум 2 Вт на выходе такого моторчика для старой модели мобильного устройства и не менее 5 Вт — для современного смартфона.

Где взять высоковольтный модуль с хорошей мощностью? Попытаемся его сделать самостоятельно. Подберем удобную ручку вращения для шаговика, все выводы проводов подсоединим по схеме. Результирующие выводы постоянного тока будут идти на ваттметр и на нагрузку, которая подобрана под этот двигатель и под обороты по оптимальным параметрам.

1991401.jpg

Какую же мощность удастся развить на крупном шаговом двигателе при оборотах в количестве 120 в минуту? Начнем опыт. Ваттметр показывает 0,8 Вт при напряжении 6 вольт и токе 0,11–0,12 ампер. При более быстром вращении пиковая цифра достигает 1 ампера, но это при очень быстрых оборотах.

Следовательно, подобное устройство требует усовершенствования. Нужен преобразователь, повышающий обороты в 3-4 раза, чтобы успешно можно было заряжать телефон в походных условиях.

Для этого применяется коллекторный моторчик. Можно сделать ременную передачу на этот двигатель, чтобы повысить его обороты в 3 раза. Получится установка с диаметром шкива, который в 3 раза больше того, который установлен на шаговом двигателе. Теперь такое устройство будет вращаться в 3 раза быстрее, что позволит достигнуть показателей в 2–2,2 Вт. При этом напряжение – 17 вольт, ток – 0,12-0,13 ампер. Такая мощность уже более значительна. Если устройство закрепить на столе, крутить ручку достаточно просто.

Чем больше обороты, тем больше полезной мощности может выдать генератор.

Делаем электрошокер: подготовка

Электрошоковые устройства могут быть очень мощными. Законом разрешено использовать устройства до 3 Ватт, которые не способны нанести тяжкий вред здоровью, но гарантируют довольно сильный удар током и ожог.

1993049.jpg

Схема устройства следующая:

  • источник питания;
  • повышающий преобразователь;
  • высоковольтный умножитель напряжения.

Можно использовать обычный литий-ионный аккумулятор компактных размеров, лучше — литий-железофосфатный. Он имеет меньшую емкость при одинаковом весе, а номинальное напряжение составляет 3,2 вольт против 3,7 вольта в литий-ионном варианте.

Такое устройство обладает массой преимуществ:

  • При собственной емкости всего в 700 мА/часов такой способен отдавать токи в 30-50 А.
  • Имеет срок службы 10-15 лет.
  • Способен работать при температуре до -30 градусов без утраты емкости и прочих негативных последствий.
  • Экологически чист, безопасен, не вздувается и не взрывается.
  • Утрачивает емкость гораздо медленнее.
  • Не так чувствителен к параметрам зарядного устройства, может быть заряжен большими токами, не перегреваясь.

Для преобразователя можно использовать готовую модель из Китая. Или изготовить его собственными руками. Самое важное в таком устройстве – трансформатор. Его можно взять от дежурного источника неработающего блока питания компьютера. Желательно, чтобы он был удлиненного типа, что облегчит процесс мотания.

Собираем устройство

Трансформатор нужно разобрать, извлечь сердечник и нагревать его паяльной лампой в течение 5-10 минут. Структура клея ослабеет, и половинкам легче будет разъединиться.

Внутри есть зазор. Удаление половинок в сердечнике сменяется этапом смотки всех заводских обмоток, остается только поверхность голого каркаса.

Правила выполнения намоточных движений

Высоковольтный модуль для электрошокера требует, чтобы была выполнена намотка первичного типа трансформаторной обмотки. Длину провода в 0,5 мм складывают в два раза. Оптимальные показатели диаметра – от 0,4 до 0,7 мм. Потребуется намотать не менее 8 витков и вывести второй конец проводов наружу.

1991399.jpg

Изолируем намотанную обмотку при помощи нескольких слоев фторопласта или прозрачного скотча. К тонкому поводу, толщина которого не более 0,05 мм, припаивается кусок многожильного провода, помещенного в толстую изоляцию.

Места, где была выполнена пайка, изолируем при помощи термоусадки. Выводим провод и фиксируем его термоклеем, чтобы случайно не оборвать в процессе обмотки.

Наматываем первичную обмотку, по 100-120 витков, чередуя ее с несколькими слоями изоляции. По своему принципу намотка проста: ряд – слева направо, второй – справа налево, с изоляцией между ними. Так повторяем от 10 до 12 раз.

После того, как намотка выполнена, провода срезаются, к ним припаиваются многожильные высоковольтные провода и термоусадка. Все фиксируют посредством нескольких слоев прозрачным скотчем и собирают трансформатор.

Если не хотите так долго наматывать витки, можно приобрести готовые модули в китайских интернет–магазинах по вполне доступной стоимости или изготовить высоковольтный модуль своими руками.

Испытание устройства

Следующая часть умножителя напряжения – высоковольтные диоды и конденсаторы, которые можно взять от компьютерного блока питания. Диоды нужны также высоковольтного типа. Их напряжение должно быть от 4 кВт. Такие элементы также можно приобрести в интернет–магазинах.

Корпусом может служить коробка от фонарика или плеера, но обязательно из диэлектрического материала: пластмассы, бакелита, стеклотекстолита.

Умножитель с высоковольтным преобразователем рекомендуется залить эбокситной смолой, расплавленным воском или термоклеем. Последний может сильно деформировать корпус, если не поместить его в емкость с холодной водой.

Электроды можно взять от обычной вилки. Шокер снабжен предохранительным выключателем для защиты от случайного включения. Для активации устройства его снимают с предохранителя. Загорается индикаторный светодиод, затем нажимают на кнопку.

Высоковольтный модуль — преобразователь напряжения успешно показывает работоспособность в электрошокере. Зарядное устройство построено на базе микросхемы, где на вход модуля подается напряжение в 5 вольт, на выходе в 3,6 вольта. Такая зарядка позволяет питать девайс от любого USB-порта.

С помощью припоя можно сделать защитные разрядники, ограничивающие длину дуги для безопасной работы высоковольтного преобразователя. Шокер готов.

Изготовление высоковольтного модуля из энергосберегающей лампы

И такое устройство можно без труда изготовить своими руками. Вот только где взять высоковольтный модуль? Можно использовать обычную лампочку накаливания. Вначале мотаем не более 80 мотков. Второй слой – 400-600 витков. Между каждым слоем не забываем делать изоляцию из скотча.

1991414.jpg

Для испытания устройства подключим его через ограничительную лампочку в 35 Вт. Получился достаточно мощный высоковольтный модуль зажигания.

Сферы применения продукции

Где используется высоковольтный модуль? Такие устройства широко используются для изготовления современной аппаратуры, могут служить лабораторным генератором высокого напряжения. С помощью такого устройства можно построить самодельный шокер, систему для поджигания топлива в форсунке или двигателе.

1991397.jpg

Можно использовать для обеспечения питания портативного счетчика Гейгера, дозиметра, разновидностей аппаратуры, требующей высоких показателей напряжения с питанием, которое имеет небольшую мощность.

1991395.jpg

Устройство микросхемы включено в режиме «Мультивибратор» при показателях частоты, регулируемой в зависимости от того, каковы характеристики трансформатора. Высокий уровень, который показывает выходной сигнал тока, протекающий по резистору и первичной обмотке трансформатора, способен зарядить конденсатор 10 мкф. Для того, чтобы изготовить электрошок, потребуется устройство трансформатора, коэффициент умножения которого составляет 1 к 400 и выше.

Для получения искры в 1 мм нужны показатели напряжения около 1000 В. Зная последовательность работ, можно изготовить такое устройство собственными руками.

Используемые источники:

  • https://electrohobby.ru/preob-napr-tww.html
  • https://2shemi.ru/chema-vysokovoltnogo-preobrazovatelya-napryazheniya/
  • https://fb.ru/article/341166/vyisokovoltnyiy-modul-gde-ispolzuetsya

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации