Андрей Смирнов
Время чтения: ~16 мин.
Просмотров: 15

Как сделать тепловизор своими руками: советы от профи

В современном мире трудно будет отыскать человека (за исключением, возможно, лишь детей до 7-8-летнего возраста) никогда не слышавших о тепловизорах. Правда, хоть раз державших настоящий прибор в руках, наберётся не так много. И, тем не менее, на свете существуют люди, не только обладающие тепловизорами, но и смастерившие их самостоятельно из подручных материалов.

Возможно ли сделать тепловизор своими руками?

Такая необходимость становиться новыми Кулибинами в нашей стране связана с весьма высокой стоимостью этих профессиональных устройств. В случае же сборки по принципу «сделай сам» цена самодельного тепловизора падает даже не в разы, а на порядки. Несмотря на довольно сложный принцип работы, сборка аппарата в домашних условиях возможна, а абсолютное большинство необходимых датчиков (например, популярный MLX90614ESF) можно легко купить на интернет-площадках типа e-bay. По существу, главной сложностью является оптика, требуемая для чёткого конфигурирования изображения на приёмном мониторе. Причём оптика специализированная, использующая в составе редкоземельные элементы (чаще всего германий) – и вот её без уникальных технических навыков и глубоких знаний физики изготовить в квартире малореально.

teplovizor-na-ohote1-1024x767.jpg

Действие тепловизора на охоте

Однако, простое решение для этого есть – и состоит оно в использовании готовых оптических систем из любого устройства, в котором они присутствуют (цифровых фотоаппаратов, web и обычных видеокамер и т.д.).

Необходимость на охоте

Тепловизор – прибор многофункциональный, но, помимо использования в качестве стационарного оборудования (для контроля различных промышленных техпроцессов), наиболее полезна его портативная и переносная версия. В полной мере относится сказанное и к применению прибора на охоте – причём желательным является конструкция аппарата в виде ударопрочного и лёгкого моноблока, обеспечивающая высокую дальность различимой видимости (на профессиональных моделях составляющая 1,5 км и имеющая уровень защиты свыше IP54). Если аппарат будет собран на цифровой, а не аналоговой оптике (с трудом позволяющей отличить горячий костёр от холодного снега на расстоянии уже 100 метров), охотник получит возможность найти зверя или птицу в самых неблагоприятных для обычного человеческого зрения условиях. К таковым можно отнести и тёмное время суток, и густой туман, и дождь, и даже заросли, маскирующие животных, застывших и не двигающихся с места.

gotovyj-teplovizor1.jpg

Готовый тепловизор

Для тепловизора же излучение тела теплокровных млекопитающих или птиц на мониторе будет выглядеть ярким пятном, что просто не позволит добыче остаться незамеченной.

Принцип работы

Принцип действия тепловизоров основан на законе физики, согласно которому любое нагретое тело излучает в пространство тем более интенсивное инфракрасное излучение (ИК), чем горячее температура предмета – в том числе и тело теплокровного животного. Такое излучение улавливается нашим прибором и преобразуется в картинку на мониторе, удобную для человеческого восприятия. Разница в температуре ИК-излучения передаётся различными цветами, привычными для нас по традиционному, видимому излучению. От тёмно-фиолетового и синего для наиболее холодных тел – до оранжевого и ярко-красного горячих.

shema-teplovizora1.jpg

Схема тепловизора

Осуществляется этот процесс приёма-передачи изображения в 3 этапа:

  • улавливание ИК-оптикой теплового излучения;
  • цифровое распределение его по величинам температур;
  • построение термографической картинки – имитации так называемой тепловой карты объекта (чем-то схожей с привычным показом температур на картах метеорологических прогнозов погоды).

Стоит отметить, что для человеческой скорости реакции все эти действия осуществляются по существу мгновенно.

Конечно, собранный самостоятельно тепловизор качества картинки и эффективной дальности профессионального аппарата не даст. Но для охотника, желающего засечь хотя бы просто бесформенное тепловое пятно затаившегося зверя, в устройстве высокой чёткости стоимостью в 5, 10, а иногда и в 20 тысяч долларов, в сущности, нет необходимости.

Как действует тепловизор – изображение

Мы готовы предложить вам три практических варианта сборки любительского тепловизора – а какой из них выбрать, решать остаётся самому охотнику.

Принцип работы тепловизора на примере автомобиля

Тепловизор из фотоаппарата

Этот метод создания тепловизора наиболее прост и недорог – поскольку требует минимального вмешательства в конструкцию цифровика и таких же невысоких затрат. Основан он на том простом физическом факте, что цифровые аппараты на входе фиксируют ИК-излучение так же, как и обычное. Но, поскольку в обычных условиях тепловая часть спектра фотографу не нужна, перед приёмной матрицей производителями устанавливается специальный фильтр, отражающий ИК-лучи (так называемый «hot mirror», или тепловое зеркало).

Изготовление самодельного тепловизора из фотоаппарата

Таким образом, превращение цифровика в тепловизор по существу будет заключаться лишь в замене одного снятого фильтра (инфракрасного) на другой (для обычного света). Причём на практике даже 2-е действие, в принципе, можно не осуществлять.

Схема обработки изображения фотоаппаратом

Устройство из web-камеры

Этот вариант также возможен – но наиболее трудоёмок и относительно дорог, поскольку требует дополнительных затрат в сумме примерно $150. К тому же эффективно полученный прибор на сервоприводах способен будет засечь лишь неподвижный предмет с тепловым излучением.

Особенности сборки тепловизора из веб-камеры на фото

Положение ИК фильтра
Камера в разобранном виде
Как разобрать камеру
Демонтаж ИК фильтра
Вынуть ИК фильтр

Для сборки понадобится:

  • специальная плата передачи изображения на ПК Arduino, устанавливаемая в батарейный отсек;
  • один малый серводвигатель для перемещения по вертикали, крепящийся спереди от платы скотчем или суперклеем;
  • второй большой серводвигатель, размещаемый в поворотном по горизонтали устройстве и служащий основой для закрепления на нём всей конструкции;
  • температурный датчик MLX90614, подключаемый к плате Arduino согласно схеме;
  • аналогичным образом подключаемая лазерная указка (указывающая текущее направление сканирования);
  • сама «вебка», точно сориентированная с указкой и тепловым датчиком.

Данная конструкция и будет работать как тепловизор с целеуказателем (правда, придётся отдельно скачать и установить ещё и софт для Arduino – доступный в интернете и небольшой по размеру – около 7Мб вместе с инструкцией по установке скетчей и библиотек).

Схема подключения датчика и сервоприводов к микроконтроллеру

По существу, технически метод является копией варианта с фотоаппаратом – разве что корпус такого тепловизора получится более удобным, а качество изображения – более высокой чёткости (правда, потребуется видеокамера с инфракрасной подсветкой).

Тепловизор из видекамеры

Другие варианты

Вполне реальным (и наиболее комфортным для всех, кто не особо дружит с паяльниками, отвёртками и технической литературой) является и вариант с использованием самых обычных смартфонов, наделённых возможностями тепловизора Flir One.

Как работает ПНВ на телефоне

Тепловизор из смартфона

Для путешественников и охотников экран такого смартфона (при активации соответствующего режима) будет ничем не уступать по качеству картинки наиболее простым профессиональным тепловизорам. А также обладать возможностью работать под дождём и визуализировать любое ИК-излучение в пределах от 0 до 100°С. Хотя и не позволит, разумеется, что-либо различить на расстояниях около километра. Но — будучи при этом примерно в 10 раз дешевле! И ничего не стоя (в плане дополнительных затрат) тем, кто просто решит обновить мобильный телефон на такую модель.

Тепловизор из прибора GPS

В заключение можно сказать, что ряд современных стандартных гаджетов вполне позволяют преобразовать себя в тепловизоры – после внесения минимальных изменений в конструкцию. И в результате, не требуя огромных дополнительных вложений, значительно расширяют временные и погодные рамки условий, при которых с помощью даже самодельных тепловизоров можно засечь желанную добычу. Хотя при ночном вождении использование таких самодельных устройств в качестве прибора ночного видения автомобилях все же не рекомендуется (а созданных на основе веб-камер – запрещается).

Подробнее читайте тут

Основная функция тепловизора заключается в наблюдении за изменяющимся распределением температуры на какой-либо поверхности. Вся полученная информация отображается на дисплее, как цветовое поле, где каждый цвет соответствует определенному температурному значению. Современные модели тепловизоров могут быть стационарными и переносными. С помощью стационарных устройств контролируются различные технологические процессы, выполняемые на промышленных предприятиях. Переносные тепловизоры применяются в особых условиях, когда скорость и простота использования приобретают решающее значение.

Содержание

Принцип работы тепловизора

Для работы тепловизоров годятся любые погодные условия. С их помощью составляются термограммы, проверяется качество утепления помещений, определяются наиболее холодные или теплые места в комнатах, источники сквозняков и места скопления воды из-за перепадов температур. Но, несмотря на все положительные качества, очень немногие могут приобрести его в личное пользование по причине довольно высокой стоимости. Поэтому многие умельцы пытаются изготовить тепловизор своими руками из подручных материалов.

Благодаря способности к идентификации тепловых волн, тепловизоры стали популярны во многих областях жизни и деятельности людей. Все неодушевленные предметы, наряду с живыми существами, производят излучение электромагнитных волн в достаточно широком диапазоне частот, в том числе и в инфракрасном спектре. Инфракрасное излучение часто называется тепловым. Степень его интенсивности находится в зависимости от температуры объекта и практически не изменяется при разной степени освещения.

Данное свойство положено в основу работы тепловизора, не только фиксирующего тепловое излучение, выделяемое объектами, но и преобразующего в форму, доступную для визуального восприятия. С этой целью в приборе устанавливается специальный объектив с оптикой из германия. Данный материал применяется для изготовления линз, беспрепятственно пропускающих тепловое излучение. Обычное стекло нельзя использовать, потому что оно задерживает инфракрасные лучи.

Проходя через систему линз, инфракрасные волны задерживаются на специальной матрице. Она выполнена в виде микросхемы, состоящей из светочувствительных диодов, способных изменять сопротивление в зависимости от интенсивности воздействия на них инфракрасных лучей. Современные технологии позволяют создать матрицу компактной, с низкой энергоемкостью. Для улучшения качества изображения предусмотрено ее охлаждение с помощью программных и аппаратных средств. Токовые посылки, прошедшие через матрицу, считываются процессором и преобразуются в видеосигнал, который выводится на внешний монитор или дисплей тепловизора. Разница температур объекта и окружающей среды дают вполне четкий контур изображения. Каждая волна в зависимости от температуры, отображается с помощью разных цветов. Для более удобного пользования прибором в некоторых моделях поверх кадра выводится шкала, отображающая соответствие разных точек изображения, значениям абсолютной температуры объекта. Дополнительно могут отображаться минимальные и максимальные значения температур.

Современные приборы обладают точностью вычислений в пределах 0,05 градуса, что дает возможность получить наиболее реалистичную картинку. Чаще всего настройка тепловизора выполняется на тепловые волны длиной 3-5,5 мкм. Это дает возможность снизить до минимума влияние на чувствительность прибора таких природных явлений, как дождь, снег, туман и дым.

Тепловизор своими руками из фотоаппарата

Одним из вариантов является самостоятельное изготовление тепловизора на базе фотоаппарата, в состав которого входит матрица со структурой, как и у настоящего прибора.

Изначально каждый фотоаппарат настраивается таким образом, чтобы человек получал изображения в натуральном виде. С этой целью устанавливается специальный фильтр, отражающий или поглощающий инфракрасные лучи. В результате, кривая чувствительности матрицы становится идентичной кривой человеческого глаза. Для того чтобы фотоаппарат стал выполнять функции тепловизора, из него нужно удалить фильтр инфракрасного излучения. Иногда вместо него устанавливается фильтр видимого спектра, не имеющий большого значения и не влияющий на качество изображения. Таким же образом можно изготовить тепловизор для охоты своими руками.

Готовый тепловизор может применяться в домашних условиях. С его помощью легко обнаружить места проникновения в помещение холодного воздуха, ликвидировать сквозняки и утечку тепла.

Тепловизор своими руками из смартфона

Сам смартфон невозможно превратить в тепловизор без использования дополнительного оборудования. Однако с недавних пор стала выпускаться специальная приставка Seek Thermal, являющаяся по своей сути мобильным миниатюрным тепловизором, с размерами, не более спичечного коробка.

Этот мини-прибор способен работать со многими смартфонами на базе Андроид версии не ниже 4.3. Он выполняет те же функции, что и настоящие фирменные тепловизоры, подключается через стандартные разъемы. Получается довольно легко собрать самодельный тепловизор своими руками. Несмотря на маленькие размеры, объектив камеры оборудован кольцом для фокусирования, а также чувствительным сенсором в виде матрицы на 32 тыс. пикселей, частота съемки у которой составляет 9 Гц. Основным достоинством прибора считается величина рабочего температурного диапазона в пределах от -40 до +330С.

Смартфон для тепловизора является не только экраном, отображающим информацию, но и своеобразной вычислительной машиной. Все действия выполняются с помощью специального приложения Seek Thermal, обладающего широкими возможностями. Данная программа позволяет сделать выбор цветовой палитры, единиц измерения температуры, выполнить настройку изображения и много других операций.

Одним из способов самостоятельного изготовления тепловизора является вариант с использованием видеокамеры. Для этого нужно заранее подготовить все необходимые материалы . Следует запастись обычным инфракрасным термометром, комплектом светодиодов RGB, платой Arduino и самой видеокамерой.

Решение задачи, как сделать тепловизор своими руками достаточно простое, за исключением особенностей программирования платы. В самом начале выполняется подключение инфракрасного термометра к плате Arduino. Данный элемент позволяет определить температуру объекта в какой-либо конкретной точке. Сама плата выполняет промежуточную функцию. К ней подключаются заранее приготовленные светодиоды. Затем всю систему нужно запрограммировать таким образом, чтобы показания термометра совпадали с определенным цветом, который будут производить светодиоды. Если выполнить настройку в соответствии с общепринятыми стандартами, то высокой температуре будет соответствовать красный цвет, а более низким температурным показателям – синий.

Работоспособность всей конструкции проверяется путем направления на стену луча инфракрасного термометра. При этом светодиоды должны загореться установленными цветами. Однако такая проверка будет неполной в связи с отсутствием дисплея. Эта проблема легко решается с помощью обычной видеокамеры, настроенной на замедленную съемку. Снимки производятся через каждые 2-3 секунды, фиксируя освещение, исходящее от светодиодов. На дисплее отображаются соответствующие цветные пятна.

Тепловизор своими руками из веб-камеры

Одним из вариантов такой сборки является использование рабочей веб-камеры и датчика температуры MLX90614, предназначенного для сканирования объекта. Его единственным недостатком считается очень низкая скорость сканирования. Однако на фоне существенной экономии денежных средств, эта проблема не имеет решающего значения.

Дополнительно понадобятся: плата Arduino, два сервопривода с корпусами, штатив, резисторы на 4,7 кОм – 2 шт., лазерная указка. Источником исходного изображения служит веб-камера, она же выполняет функции видоискателя.

С помощью двух сервоприводов осуществляется движение в горизонтальном и вертикальном направлениях. Нижний горизонтальный привод закрепляется на штативе, сюда же устанавливается лазерная указка. На вертикальный сервопривод прикрепляется веб-камера и датчик температуры. Датчики Arduino подключаются по специальной схеме. Далее, когда тепловизор из камеры своими руками полностью собран, вся конструкция помещается в общий корпус и закрепляется на штативе. После этого можно начинать сканирование выбранной области. При этом лазерная указка выполняет функцию целеуказателя во время проведения съемки.

Самодельный сканирующий тепловизор из ик-датчика

Рекомендуем статьи по теме

Принцип работы светодиода: параметры и характеристики

Инфракрасные обогреватели вред и польза

Камеры видеонаблюдения

Камера видеонаблюдения Wi-Fi

Камеры видеонаблюдения с датчиком движения и записью

Камера видеонаблюдения к телевизору

37ba8da5d14672fc99bf0c4036462f4d.jpg Не секрет что каждый из нас хоть раз но мечтал получить в свои руки настоящий тепловизор. Ведь это уникальный шанс взглянуть на мир вокруг совершенно «другими глазами», увидеть скрытое и возможно даже глубже познать суть некоторых явлений. И единственной преградой к этой мечте служит цена подобных устройств. Несмотря на весь прогресс, она остается непомерно высокой для простого смертного. Однако подобно лучу света в непроглядном мраке безысходности на свет появилась разработка двух студентов из Германии. Их устройство на базе микроконтроллера Arduino является довольно простым в изготовлении и существует аж с 2010 года. Создателями данного чуда являются Макс Риттер и Марк Коул из города Миндельхейм, что в Германии. Их проект принес им награду на научно-техническом молодежном форуме в 2010 году, и с тех самых пор в сети имеются исходники с подробным описанием конструкции.17a537c749856d9efc1d4ce09a5b7ba6.jpg Низкая стоимость устройства достигается благодаря использованию одного-единственного температурного датчика MLX90614, подобного тому, что используются в пирометрах и системы механической развертки изображения, состоящей из двух сервоприводов. Таким образом, датчик по сути обходит будущую картину, точка за точкой сканируя температуру. Само-собой, это выливается в долгое время получения изображения, что и является главным недостатком самодельного тепловизора. Но ведь если вспомнить о том, сколько мы сэкономили на цене, на это глаза сами-собой закрываются. Итак, из компонентов для создания устройства, понадобится:

  • Старая веб-камера, разумеется, рабочая;
  • Микроконтроллер Arduino;
  • Сервоприводы, 2 штуки;
  • Датчик температуры MLX90614-BCI;
  • Китайская лазерная указка;
  • Корпуса для сервоприводов;
  • Любой штатив (оптимально).
  • Два резистора на 4.7кОм.

Веб-камера Камера здесь будет являться источником исходной картинки а также своеобразным видоискателем для области сканирования. Подойдет практически любая дешевая вебка. Я нашел у себя в бардаке старую-добрую Logitech. Если же подходить к вопросу практично, чем меньше веб-камера по размерам, тем лучше. Поэтому огромный корпус моей старушки пришлось снять.Сервоприводы и крепления К этому моменту тоже можно подступиться с широким размахом. Нам понадобятся 2 сервопривода — один будет отвечать за движение по вертикали, второй по горизонтали соответственно. Учитывая, что на горизонтальном приводе держится и вертикальный и сама веб-камера, стоит взять более мощный. Хотя многие, уже сделавшие устройство спокойно пользуются одинаковыми маломощными. Крепления для сервоприводов в оригинале называются «поворотно-наклонным механизмом» а у нас «Серво-кронштейном» Я покупал все эти компоненты тут. В сборе данный элемент конструкции выглядит примерно так:249fd9ce57061ada5c8a41c9f07431f1.jpg Нижний привод крепится к штативу или другому корпусу/подставке туда же надо вставить и лазерную указку, к вертикальному сервоприводу приделывается веб-камера и датчик MLX90614 путем хитрых манипуляций с клеем или деталями от конструктора или например запчастями от старых электросчетчиков (как у меня).Датчик температуры MLX90614-BCI Самая сложная часть данной конструкции. Сложная в плане добычи. Найти его непросто (по крайней мере на отечественных сайтах) и он является самой дорогой частью конструкции. Сам я ждал его около двух месяцев, везли видимо из Китая. Подсказать где взять не смогу, ибо ту лавочку уже прикрыли. Автор проекта ссылается на Futureelectronics. При выборе необходимо обратить особое внимание на последние буквы «BCI» в названии, что означает наличие у датчика насадки для обеспечения узкого поля зрения. Выглядит он так:714bf75ff21461931d939c51ca115fd5.jpgArduino и схема подключения Схема подключения датчика и сервоприводов к микроконтроллеру простейшая:b457d031b83dcfd85baf8c5c5c33f5c5.jpg Скетч для Arduino и программное обеспечение для работы с тепловизором можно скачать здесь:Официальная страница проектаПрограммное обеспечение (на JAVA)Скетч для микроконтроллера Также хочу обратить внимание, что авторы указывают на необходимость дополнительной настройки датчика при помощи специального скетча, что вроде как должно ускорить работу устройства. Однако в моем случае, датчик после конфигурации стал выдавать ложные значения температуры и я сделал откат. После сборки всей схемы, ее можно поместить в корпус, и закрепить на штативе:e76ac1a0200a031f9c43179839b86f05.jpg Небольшие пояснения: В качестве корпуса для микроконтроллера взял пластиковую упаковку из-под автомобильного освежителя (на фото слева), он в свою очередь держится на штативе при помощи крепежа от учебного оптического прицела. В общем, строго выдержан принцип дешевизны и использования того, что было под рукой. Светится на фото фонарик, который был бонусом к лазерной указке и оказался весьма полезным при сканировании темных областей.Процесс съемки Зачем здесь нужен китайский лазер и как же происходит процесс сканирования легко понять на примере моего шикарного ковра:d85c77dca940ceeaaf5e3fe648e1efd2.jpg Не удивляйтесь, что ПО на русском, просто я уже некоторое время занимаюсь его доработкой под свои нужды, попутно изучая язык Java. К несчастью, пока моих знаний недостаточно для окончательного оформления готового продукта. Итак, на картинке с веб-камеры есть две желтые точки и точка нашего лазера (снизу по центру). Вся калибровка состоит в том, чтобы выбрать координаты центра и левого нижнего угла будущей термограммы. В этом собственно и поможет лазерная указка:d19deaa04c09aef2cccc9afc8ad86117.jpg Сегодняшнее ПО поддерживает всего два типа разрешения будущей картинки, в то время, как прошлая версия была богата на это дело, насчитывая шесть разных разрешений. Особенно было забавно получать сильно «пиксельные» картинки за 15 секунд. Думаю, разработчики осознали ненужность остальных режимов и убрали их, хотя программно они остались и могут быть активированы.Результаты на десерт Приведенные термограммы в различном разрешении. Как греется нетбук:ad27ea993280977e644339eba75ef609.jpg Мой Кот:5b94abc997b4d41c3e050737b3ee96f6.jpg Старый счетчик:c423f5fa302c9c8fc1abe849c1531169.jpg Новый щит:5796250a697e2b449dd9c8436114461b.jpg Окно: Мой друг в темной комнате перед компьютеромПрименение Из-за большого времени сканирования, данный прибор не подходит для проведения энергетического аудита (по крайней мере, для профессионального применения), этот вопрос рассмотрен в этой Статье (Англ.). Тем не менее, как мне кажется он мог бы стать отличным подспорьем для проверки на нагрев электрических соединений и силовых сборок. В моей практике (а я подрабатываю электриком) иногда использую этот тепловизор для оценки надежности соединений. Пирометр в данном случае проигрывает в наглядности. Неудобства в работе связаны с жесткой привязкой прибора к компьютеру и необходимости всегда таскать нетбук. Какое-то время авторы вели разработку второй версии своего тепловизора, которая позиционировалась как обособленное устройство с другим датчиком температуры (который кстати использован в этом проекте) с собственным дисплеем и возможностью записи на карту памяти. Но к сожалению, как признался Макс Риттер, у него нет времени на завершение проекта. В общем, дальнейшее развитие идеи лежит на плечах любителей и умельцев. Буду рад любым предложениям по доработке/усовершенствованию конструкции. Спасибо за внимание!Официальная страница проекта (Англ.)Используемые источники:

  • https://iohotnik.ru/snaryazhenie-dlya-ohoti/6400-kak-sdelat-teplovizor-svoimi-rukami-sovety-ot-profi.html
  • https://electric-220.ru/news/teplovizor_svoimi_rukami/2017-02-11-1177
  • https://habr.com/post/172947/

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации