Андрей Смирнов
Время чтения: ~18 мин.
Просмотров: 29

Миллиомметр

Простой миллиомметр

Автор: vitek47 от 28-11-2013, 11:55В практике радиолюбителя приходится встречаться с необходимостью измерения низкоомных сопротивлений (до 1 Ом). Решить эту задачу и предназначен простой миллиомметр. Этим устройством можно с достаточной для радиолюбителя точностью измерять сопротивления от 0,0001 до 1 Ома.При измерении малых сопротивлений с помощью цифровых мультиметров последовательно с измеряемым сопротивлением, назовём его Rx, неизбежно включено сопротивление соединительных проводов, переходное сопротивление входных клемм или гнёзд, контактов переключателя и т.п. Это сопротивление (Rпр.) находится в пределах 0,1…0,4 Ом. Вследствие вышеуказанных причин, реально измеренное сопротивление будет больше Rx на некоторую величину (Rx+Rпр.). Погрешность может доходить до 50 % при измерении очень малых сопротивлений. Для больших сопротивлений эта ошибка невелика, и её можно не учитывать.Из изложенного понятно, что надо исключить влияние соединительных проводов и т.п. на результат измерения очень малых сопротивлений. Существует метод измерения низкоомных сопротивлений по 4-зажимной схеме на постоянном токе. Применение данного метода полностью исключает влияние соединительных проводов на результат измерения малых сопротивлений. Этот метод используется в данном миллиомметре. Кратко рассмотрим суть метода измерения по 4-зажимной схеме.Рисунок 1На рис.1 (слева) приведена схема измерения сопротивления по 2-зажимной схеме. Красным цветом показан путь измерительного тока. Как видим, ток протекает и через измеряемый резистор и через сопротивление проводов (Rпр) мультиметра, что вносит погрешность в результат измерения. Сопротивление вольтметра не оказывает влияния на измерение Rx, так как обладает очень большим (до 10 МОм) внутренним сопротивлением Rвх. На рис.1 (справа) показана 4-зажимная схема измерения. Из схемы понятно, что сопротивление проводов не оказывает влияния на результат измерения, так как включено последовательно с очень большим внутренним сопротивлением вольтметра. Измерительный ток протекает только через резистор Rx.Вот схема миллиомметра (рис.2).Рисунок 2Источником питания схемы является батарея с напряжением 9 В. Выключателем SB напряжение от батареи подаётся на микросхему стабилизатора напряжения типа 7806. Конденсатор С1 служит для подавления скачков напряжения. Резисторы R1, VR2 необходимы для установки выходного напряжения микросхемы в пределах 6 В. Потенциометром VR2 устанавливается точная величина выходного напряжения величиной 6В. Потенциометром VR3 устанавливается выходной ток, протекающий через измеряемый резистор Rx равный 100мА (0,1 А). Поскольку резистор VR3 имеет относительно большое сопротивление по сравнению с измеряемым Rx, то погрешность, возникающая при этом вследствие наличия сопротивлений Rx (от 1 мОм до 1 Ом ), будет оказывать влияние на величину тока 100мА в пределах не более 2%.Конструкция миллиомметраВнешний вид и вид на монтаж деталей миллиомметра показан на фото 1, 2 и 3. Монтаж деталей выполнен навесным способом, микросхема на радиатор не устанавливалась. В качестве потенциометров VR2, VR3 использованы многооборотные резисторы для более точной установки напряжения и тока. Корпус прибора пластмассовый, размеры 11*6*4 см. Клеммы К1 иК2 металлические. Выключатель питания типа МТ-1. Фото 1Фото 2Фото 3Подготовка к измерению сопротивленияПодсоединить щупы цифрового вольтметра к клеммам К1 и К2. Подать напряжение от источника питания на схему, включив выключатель SB. Потенциометром VR2 установить выходное напряжение величиной 6 В при неподключённом резисторе Rx. Далее, отключив SB, переключаем мультиметр на измерение тока (щупы остаются на прежнем месте), включаем SB и потенциометром VR3 устанавливаем величину выходного тока 0,1А.Фото 4Фото 5Проведение измеренийДля начала возьмём несколько резисторов известной величины (0,1; 0,2; 0,5 Ом) и измерим их сопротивление, чтобы убедиться в работоспособности миллиомметра. Фото 6Не включая питание под клеммы К1 и К2, зажимаем выводы измеряемого сопротивления. Щупы цифрового вольтметра устанавливаем в гнёзда клемм К1 и К2, а предел измерения на отметку 200мВ. Включаем питание и считываем показания прибора.Фото 7Допустим, величина измеренного напряжения 22,3 мВ. Ток ранее был установлен 100мА. Делим напряжение на ток и получаем искомое сопротивление. В нашем случае: Rx=22,3: 100= 0,223 Ом. Конечно, принято делить вольты на амперы, чтобы получить Омы, но так удобнее, не надо переводить мВ и мА в вольты и амперы. Точно также измеряем другие эталонные резисторы. Но всё-таки вспомним, что 1 В-1000мВ; 100мВ-0,1В; 10мВ-0,01В; 1мВ-0,001В; 1А-1000мА; 100мА-0,1А. В моём мультиметре наименьший предел измерения — 200мВ, цена деления — 0,1 мВ. Входное сопротивление — около 10 МОм. То есть теоретически можно измерить сопротивление величиной 0,001 Ом (1мОм). Вольтметры с низким входным сопротивлением для наших измерений не годятся. Итак, мы определили, что проведенные измерения дали реальный результат. Теперь переходим к измерению неизвестного сопротивления. В качестве неизвестных сопротивлений будем использовать шунты из разобранных авометров. При измерении сопротивления самого большого шунта падение напряжения составило 0,5 мВ, ток 100 мА.Фото 8Величина сопротивления шунта, рассчитанная по закону Ома, получилась 0,005 Ом. Сопротивление малого шунта, измеренного миллиомметром, равно 0,212 Ом (падение напряжения — 21,2 мВ).Практическое применение миллиомметр может найти при подборе шунтов для зарядных устройств, измерении сопротивлений в оконечных каскадах усилителей низкой частоты и других устройств, где необходимо измерение малых сопротивлений (переходное сопротивление контактов выключателей, реле и др.).Измерение низкоомных сопротивлений можно производить и при токах более 0,1 А. Для этого необходимо собрать стабилизатор тока на соответствующий ток. Схемы стабилизаторов приведены на рис.3.Рисунок 3Стабилизатор включается в схему вместо потенциометра VR3. Конечно, это повлечёт за собой установку микросхемы и транзистора на радиаторы соответствующего размера, а также к увеличению размеров прибора.Сопротивления менее 1мОм (1000 мкОм) измеряют с помощью микроомметров. Измерительный ток может быть величиной до 150 А. Напряжение большой роли не играет.Если необходимо изготовить шунт для зарядного устройства, а нихрома, константана, манганина нет, то можно воспользоваться шпилькой подходящего диаметра, как показано на фото 9.Фото 9Материал шпильки — сталь, бронза, медь и т.п. Передвигая один из контактов по шпильке добиваются нужного сопротивления шунта. Расчёт сопротивления шунта несложен. Будут вопросы — обсудим. Вернуться 63030 8 В 

Категория: Схемы В» Измерения В» Измерители L-C-R

$(document).ready(function(){ $(«div.edirect td»).addClass(‘edir’).removeAttr(‘style’) $(«div.edirect a»).addClass(‘edir’).removeAttr(‘style’) }); Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем. Информация Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации. toozpickЭлектроникаДобавлено 9 комментариев Приветствую, Самоделкины!У большинства радиолюбителей при работе с источниками питания, очень часто возникает необходимость измерить сопротивление токовых шунтов, как самодельных, так и промышленных. А как известно обычным мультиметром даже хорошим и достаточно дорогим невозможно измерить сопротивление менее 0,1 Ома.Произвести замеры сопротивления любого резистора возможно при помощи лабораторного источника питания, который имеет функцию ограничения тока, мультиметра и, думаю, всем хорошо знакомого дедушки Ома, вернее его закона.

Но согласитесь, не плохо бы было иметь специализированное устройство, которое без дополнительных телодвижений способно измерить сопротивление нескольких резисторов и токовых шунтов. Поэтому AKA KASYAN, автор одноименного YouTube канала, решил изготовить такое устройство.Само устройство получилось довольно компактным, обладает довольно высокой точностью и самое главное не зависит от сетей, так как имеет свой источник питания в лице батареи 6F22 (Крона) с напряжением 9В.
Такой батарейки хватит на довольно длительное время. Основа работы устройства — закон Ома. В качестве подопытного возьмем резистор с не известным сопротивлением, которое нужно измерить. Данное устройство имеет систему стабилизации тока на 100 мА и измерительный вольтметр, который измеряет падение напряжения на подопытном резисторе. А зная падение напряжения и ток протекающий в цепи, не составит особого труда понять, какое сопротивление имеет наш испытуемый резистор.
Конкретно в данном примере нет необходимости производить какие-либо дополнительные расчеты, так как выбран ток 100 мА (или 0,1 А), следовательно, 100 мВ (или 0,1В) на вольтметре будет означать, что сопротивление испытуемого резистора 1 Ом. При показаниях 10 мВ – значение сопротивления 0,1Ом, 1 мВ — сопротивление соответственно 0,01 Ом. Как видите все просто, привыкнуть можно достаточно быстро.Для точной работы нашего самодельного устройства нам необходим вольтметр, который способен корректно измерять очень низкие напряжения. Изначально автор планировал сделать устройство аналоговым, но измерительные головки, которые были испытаны, увы, не могли отображать такие низкие напряжения, и требовалась установка усилитель, чего делать не хотелось, так как в наличии имелся прецизионный цифровой вольтметр, его автор приобрел на широко известной китайской торговой площадке Алиэкспресс.
Данный экземпляр, по словам продавца, имеет довольно малую погрешность, которая составляет всего 0,3 процента. Но не будем доверять продавцу и произведем дополнительную калибровку именно в диапазоне до 100 мВ. Погрешность эталонного мультиметра 1%.
Для калибровки вольтметра на его плате предусмотрен крохотный подстроечный резистор.Сам вольтметр имеет 3 провода. Черный – это масса, желтый — измерительный плюс, красный провод — плюс питания вольтметра.Такой вольтметр можно запитать от любого источника постоянного тока с напряжением от 3,5В до 28В.Данный вольтметр пятиразрядный и теоретически способен измерять напряжение начиная от 100 мкВ. Но последние цифры на дисплее не стоит воспринимать всерьез, ну разве что для округления значений. Минимальное напряжение, которое вольтметр может отображать более-менее корректно начинается от 1 мВ. Из этого следует, что минимальное сопротивление, которое может измерять наш прибор составляет 0,01 Ом, или 10 мОм. Стабилизатор тока состоит построен всего на двух компонентах, а именно из токозадающего резистора и микросхемы lm317, которая в свою очередь подключена по схеме стабилизатора тока.
Для тока 100 мА необходим резистор с сопротивлением около 13 Ом. В данном примере автором был использован подстроечный многооборотный резистор СП5-1 родом из далекого СССР.
Данный резистор на 60 оборотов, благодаря чему можно с довольно большой точностью выставить необходимое сопротивление.Вся схема выполнена на довольно компактной печатной плате. Хотя тут запросто можно обойтись и вовсе без платы из-за минимального количества компонентов.
Прибор собран, теперь необходимо произвести калибровку схемы. Для этого нам понадобится эталонный измеритель тока. В данном случае воспользуемся все тем же мультиметром в режиме амперметра, погрешность прибора в этом режиме около 1-го процента.
Подключаем все по схеме.Питание — батарея 6F22, вращаем ползунок подстроечного резистора до тех пор, пока на экране прибора не увидим значения тока равное 100 мА. Этим вся наладка завершена, остается только зафиксировать винт подстроечного резистора.Корпус для данной самоделки автор решил напечатать на 3d принтере. Как видим получилось не очень аккуратно, ну ладно.
Теперь можно все устанавливать в корпус на свои места.
Ну а теперь переходим непосредственно к испытаниям нашего устройства в деле.
Согласитесь, неплохо правда. В итоге у нас получился компактный и к тому же портативный миллиомметр. Точность прибора. Погрешность показаний вольтметра составляет 1%, добавляем к этому еще 1% погрешности системы ограничения тока, ну и добавим еще около процента на всякие потери в проводах и соединениях. В идеале получаем погрешность, не превышающую 3%. Но при измерении сопротивлений менее 0,01 Ома и выше 0,5 Ом погрешность возрастает поскольку калибровку устройства мы производили именно на этот диапазон, но и это, согласитесь, неплохо, с учетом того, что стоимость сборки не превышает 5-6 долларов.Ну а на этом, пожалуй, пора заканчивать. Благодарю за внимание. До новых встреч!Видеоролик автора:Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Автор материала: Nusik1975 aka Андрей Бучнев

Понадобилось мне как-то изготовить шунт на 50 миллиОм. Но под рукой не оказалось прибора, чтобы измерить такое сопротивление. Имеющиеся в интернете схемы либо были сложны для повторения, либо это были 2-х проводные схемы, не обеспечивающие нужной точности измерений, либо нужно было подбирать какие-то детали. Ни одна из схем меня не устроила. Как и всегда, было принято решение разработать устройство самому.

Предлагаемая приставка имеет следующие особенности:

  • простота конструкции при минимуме деталей;
  • сборка доступна даже начинающему радиолюбителю;
  • дешевизна приставки;
  • диапазон измерений от 6 мОм до 3 Ом;
  • высокая достоверность измерений;
  • лёгкость настройки;
  • нет необходимости в пересчёте показаний мультиметра;
  • питание от порта USB.

Прибор выполнен как приставка к мультиметру. Он будет полезен при изготовлении шунтов, замере малых величин сопротивления. Им можно замерить сопротивление дорожек на печатной плате, отрезка медного провода и т.п.

Схема приставки:

Согласно расчёту, приставка позволяет измерять сопротивления от 6 миллиОм до 3 Ом. На практике были проверены резисторы от 1 миллиОм до 2,2 Ом.

Поскольку требовалось разработать измерительное устройство, а не показометр, его было необходимо проверить на более точном приборе, чтобы убедится в корректности измерений. В качестве эталонного миллиомметра был использован мультиметр Agilent 34410A, откалиброванный в соответствии с технологией производителя, в сервис-центре Keysight Technologies. Калибровка обеспечивает погрешность измерения, не превышающую 0.010% + 0.004% (показания + диапазон) на диапазоне до 100 Ом. С его помощью был протестирован магазин сопротивлений, которые потом были измерены данной приставкой. Тем самым точность приставки была проверена методом сравнения с эталоном.

По результатам тестирования выяснилось, что несмотря на высокое качество и достаточно малую погрешность мультиметра Agilent 34410A, его погрешности измерений (0.010% + 0.004%) недостаточно, чтобы определить абсолютную погрешность измерения приставки. Поэтому привожу результаты замеров разных резисторов, а вам оставляю возможность рассудить самостоятельно, достаточна ли точность приставки для ваших задач.

С результатами измерений вы можете ознакомиться в таблице:

tabs-1024x436.png

В современных профессиональных мультиметрах используется 4-х проводная схема подключения измеряемой цепи, с применением зажимов Кельвина.

kelv-1024x386.png

Такое включение позволяет с высокой точностью измерять малые сопротивления, поскольку компенсирует сопротивление проводов, щупов и сопротивление контакта щупа с измеряемой цепью. В отличие от 2-х проводной схемы, в результат измерения не вносятся значительные погрешности при измерении сопротивлений в единицы Ом, не говоря уже о миллиОмах.

Поэтому, при разработке было решено использовать именно 4-х проводную схему измерения. Для измерения сопротивления через резистор пропускается заранее известный фиксированный ток, установленный с максимально возможной точностью. Для этого используются 2 из 4 проводов. Двумя другими проводами производится измерение падения напряжения на резисторе. Схема соединения с использованием щупов Кельвина частично компенсирует сопротивление контакта щупов с исследуемой цепью. Для простоты преобразования Ом в Вольты, ток через измеряемый резистор был выбран 50 мА. При меньшем токе начинает появляться нежелательная погрешность, которая складывается из погрешности приставки и погрешности мультиметра.

Для подачи на измеряемый резистор фиксированной величины тока, используется схема драйвера тока. Она состоит из: источника опорного напряжения на микросхеме MCP1525, операционного усилителя AD8541 и транзистора VT1. С помощью подстроечного резистора R2 устанавливается требуемый ток драйвера. Так как при измерении малых сопротивлений падение напряжения на измеряемом резисторе мало, был использован усилитель токового шунта на микросхеме MAX4372T. Он позволяет усилить напряжение на его входе ровно в 20 раз. К нему и подключается мультиметр в режиме вольтметра или милливольтметра. При отсутствии измеряемого резистора и подключенном питании на выходе приставки присутствует напряжение около 4,5-5 вольт.

Все компоненты приставки, за исключением подстроечного резистора R2, резистора R3 и разъёма mini-USB, размещены на одной стороне платы. Обратная сторона используется как экран. В местах сверловки под выводы R2 и R3, выводах на щупы и на мультиметр, отверстия раззенкованы с обратной стороны, для предотвращения короткого замыкания с экраном. По периметру платы просверлены отверстия, через которые земляной полигон соединяется с противоположной стороной. Резистор R3 убран в ПВХ трубочку.

Резистор R2 выбран многооборотный, типа СП5-2, но можно ограничиться и обычным подстроечным резистором.

Настройка устройства сводится лишь к тому, чтобы подстроечным резистором выставить ток 50 мА. Для этого к входам приставки C+ и C- подключается мультиметр в режиме измерения постоянного тока и на USB разъём подаётся питание.  Поворачивая движок подстроечного резистора, выставляем ток 50 мА. Желательно выставить ток как можно точнее, поскольку некорректное выставление тока драйвера будет вводить погрешность в формулу пересчёта сопротивления в напряжение. Советую даже при возможности использовать более точный мультиметр. Настройка закончена.

Формула пересчёта

Согласно закону Ома, R=U/I. Ток нам заранее известен- 50мА. Заранее известен коэффициент усиления MAX4372T, он равен 20. А поскольку 20*0.05А=1, то на каждый измеренный приставкой Ом приходится 1В напряжения, измеренный мультиметром.

Считывание показаний с мультиметра производится следующим образом. Если мультиметр находится в режиме вольтметра, то показания на его дисплее будут в Омах. Если мультиметр в режиме милливольтметра, то показания в миллиОмах. Ничего умножать, делить, вычитать, компенсировать, сбрасывать ноль, и т.п., как в ряде других конструкций, не нужно. Здесь проявляется главное удобство работы с данной приставкой. Если на мультиметре есть режим измерения милливольт, и он, к примеру, имеет предел 400 mV, то в этом режиме мультиметра мы можем измерить резисторы до 400 мОм. Резисторы больше этого номинала следует измерять уже на режиме вольтметра, и показания будут в Омах.

Сборка приставки

Корпус был выбран стандартный, из линейки Gainta, модель G431.

Печатная плата с односторонним монтажом, для упрощения изготовления. Однако, применён двусторонне фольгированный текстолит. С другой стороны платы он служит экраном. Для соединения его с земляным полигоном, по периметру платы просверлены отверстия, и в них пропущен монтажный провод, пропаянный с обеих сторон. При изготовлении печатной платы я заклеиваю скотчем фольгу на противоположной стороне, и она не стравливается в растворе. Мини-USB разъём выполнен на своей маленькой плате, на обратной стороне которой также находится фольга. Эта платка вместе с напаянным на неё разъёмом паяется встык к основной плате. Питание с разъёма подается на основную плату посредством небольшого отрезка монтажного провода. Разводку платы сначала делал под установку разъёма, но затем разъём был вынесен отдельно. В архиве в одном файле 2 платы: основная и платка для разъёма mini-USB.  Крепление платы в корпусе производится двумя саморезами по диагонали.

Плата-в-корпусе-1024x576.jpg

Проводники от зажимов до приставки были выполнены экранированным проводом МГТФ-Э 0.12, но можно использовать любой экранированный провод. Главное, чтобы каждый из 4 проводов был в своём экране, для исключения влияния наводок. Зажимы Кельвина приобретались на широко известно китайском ресурсе, стоимость их небольшая. Каждый провод от приставки припаивается к своей губке зажима, а экраны припаиваются к земляному полигону платы. Экраны проводов со стороны зажимов никуда не подключаются. Провода от зажимов до приставки уложены попарно в свои термоусадочные трубки.

Готовое-устройство-1024x576.jpg

Так как при замере малых сопротивлений счёт идёт на милливольты, проводники от приставки до мультиметра также были выполнены проводом МГТФ-Э 0.12. Они уложены внутрь термоусадочной трубки, и лишь на конце разветвляются. Для подключения приставки к мультиметру в запасах были найдены советские штыревые разъёмы с подпружиненным штырём. Пришлось их немного модифицировать, отрезав резьбовую часть.  Можно также использовать широко распространённые banana-plug (бананы).

Питание приставки должно быть в диапазоне  4.5-5.5В. Рекомендуется запитка от 5 вольт ровно. Источник питания должен обеспечивать ток не менее 0.1А. Можно, к примеру, использовать USB порт компьютера. Если будет использоваться какое-либо зарядное устройство для портативной техники, обязательно проверьте его выходное напряжение. Оно не должно быть выше 5,5 вольт.

Обзор и тестирование миллиомметра в ролике:

Авторы устройства:

Nusik1975 aka Андрей Бучнев

Shodan aka Андрей Быканов

Тула, 2017 год.

Используемые источники:

  • https://radioaktiv.ru/shems/measure/gauge/27916-prostoy-milliommetr.html
  • https://usamodelkina.ru/14320-milliommetr-svoimi-rukami.html
  • https://misrv.com/raptor4k/

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации