Андрей Смирнов
Время чтения: ~13 мин.
Просмотров: 4

Ручной монтаж сложных плат на компонентах 0402, 0603, QFN, LQFP и THT

В этой статье мы рассмотрим самые основные корпуса микросхем, которые очень часто используются в повседневной электронике.

DIP корпус

DIP ( англ. Dual In-Line Package)  –  корпус с двумя рядами выводов по длинным сторонам микросхемы. Раньше, да наверное и сейчас, корпус DIP был самым популярным корпусом для многовыводных микросхем. Выглядит он вот так:

В зависимости от количества выводов микросхемы, после слова “DIP” ставится количество ее выводов. Например, микросхема, а точнее, микроконтроллер atmega8 имеет 28 выводов:

atmega8apu.jpg

Следовательно, ее корпус будет называться DIP28.

 А вот у этой микросхемы корпус будет называться DIP16.

Чтобы не считать каждый раз количество выводов, можно их сосчитать только на одной стороне микросхемы и тупо умножить на два. 

В основном в корпусе DIP в Советском Союзе производили логические микросхемы, операционные усилители и тд. Сейчас же корпус DIP также не теряет своей актуальности и в нем до сих пор делают различные микросхемы, начиная от простых аналоговых и заканчивая микроконтроллерами.

Корпус DIP может быть выполнен из пластика (что в большинстве случаев) и называется он PDIP, а также из керамики – CDIP. На ощупь корпус CDIP твердый как камень, и это неудивительно, так как он сделан из керамики.

Пример CDIP корпуса.

153683.jpg

Имеются также модификации DIP корпуса: HDIP, SDIP.

HDIP(Heat-dissipatingDIP) – теплорассеивающий DIP. Такие микросхемы пропускают через себя большой ток, поэтому сильно нагреваются. Чтобы отвести излишки тепла, на такой микросхеме должен быть радиатор или его подобие, например, как здесь два крылышка-радиатора посерединке микрухи:

h_f606.jpg

SDIP (Small DIP) – маленький DIP. Микросхема в корпусе DIP, но c  маленьким расстоянием между ножками микросхемы:

 

SIP корпус

SIP корпус (Single In line Package) – плоский корпус с выводами с одной стороны. Очень удобен при монтаже и занимает мало места. Количество выводов также пишется после названия корпуса. Например, микруха снизу в корпусе SIP8.

У SIP тоже есть модификации – это HSIP (Heat-dissipatingSIP). То есть тот же самый корпус, но уже с радиатором

 

ZIP корпус

ZIP (Zigzag In line Package) – плоский корпус с выводами, расположенными зигзагообразно. На фото ниже корпус ZIP6. Цифра – это количество выводов:

Ну и корпус  с радиатором HZIP:

Только что мы с вами рассмотрели основной класс In line Package микросхем. Эти микросхемы предназначены для сквозного монтажа в отверстиях в печатной плате.

Например, микросхема DIP14, установленная на  печатной плате

и  ее выводы с обратной стороны платы, уже без припоя.

Кто-то все таки умудряется запаять микросхемы DIP, как микросхемы для поверхностного монтажа (о них чуть ниже), загнув выводы под углом в 90 градусов, или полностью их выпрямив. Это извращение), но работает).

Переходим к другому классу микросхем – микросхемы для поверхностного монтажа или, так называемыеSMD компоненты. Еще их называют планарными радиокомпонентами.

Такие микросхемы запаиваются на поверхность печатной платы, под выделенные для них печатные проводники. Видите прямоугольные дорожки в ряд? Это печатные проводники или в народе пятачки.  Вот именно на них запаиваются планарные микросхемы.

 

SOIC корпус

Самым большим представителем этого класса микросхем являются микросхемы в корпусе SOIC  (Small-Outline Integrated Circuit)  – маленькая микросхема с выводами по длинным сторонам. Она очень напоминает DIP, но обратите внимание на ее выводы. Они параллельны поверхности самого корпуса:

Вот так они запаиваются на плате:

Ну и как обычно, цифра после “SOIC” обозначает количество выводов этой микросхемы. На фото выше микросхемы в корпусе SOIC16.

 

SOP корпус

SOP (Small Outline Package) – то же самое, что и SOIC.

Модификации корпуса SOP:

PSOP – пластиковый корпус SOP. Чаще всего именно он и используется.

HSOP  – теплорассеивающий SOP. Маленькие радиаторы посередине служат для отвода тепла.

SSOP(Shrink Small Outline Package) – ” сморщенный” SOP. То есть еще меньше, чем SOP корпус

TSSOP(Thin Shrink Small Outline Package) – тонкий SSOP. Тот же самый SSOP, но “размазанный” скалкой. Его толщина меньше, чем у SSOP. В основном в корпусе TSSOP делают микросхемы, которые прилично нагреваются. Поэтому, площадь у таких микросхем больше, чем у обычных. Короче говоря, корпус-радиатор).

SOJ – тот же SOP, но ножки загнуты в форме буквы “J” под саму микросхему.  В честь таких ножек и назвали корпус SOJ:

Ну и как обычно, количество выводов обозначается после типа корпуса, например SOIC16, SSOP28, TSSOP48 и тд.

 

QFP корпус

QFP(Quad Flat Package) – четырехугольный плоский корпус. Главное отличие от собрата SOIC в том, что выводы размещены на всех сторонах такой микросхемы

Модификации:

PQFP –  пластиковый корпус QFP.  CQFP – керамический корпус QFP.  HQFP – теплорассеивающий корпус QFP.

TQFP(Thin Quad Flat Pack) – тонкий корпус QFP. Его толщина намного меньше, чем у его собрата QFP

 

PLCC корпус

PLCC (Plastic Leaded Chip Carrier) и СLCC(Ceramic Leaded Chip Carrier) – соответственно пластиковый и керамический корпус с расположенными по краям контактами, предназначенными для установки в специальную панельку, в народе называемую “кроваткой”. Типичным представителем является микросхема BIOS в ваших компьютерах.

Вот так примерно выглядит “кроватка” для таких микросхем

А вот так микросхема “лежит” в кроватке.

Иногда такие микросхемы называют QFJ, как вы уже догадались, из-за выводов в форме буквы “J”

Ну и количество выводов ставится после названия корпуса, например PLCC32.

 

PGA корпус

PGA(Pin Grid Array) – матрица из штырьковых выводов. Представляет из себя прямоугольный или квадратный корпус, в нижней части которого расположены выводы-штырьки

Такие микросхемы устанавливаются также в специальные кроватки, которые зажимают выводы микросхемы с помощью специального рычажка.

В корпусе PGA  в основном делают процессоры на ваши персональные компьютеры.

Корпус LGA

LGA (Land Grid Array) — тип корпусов микросхем с матрицей контактных площадок. Чаще всего используются в  компьютерной технике для процессоров.

Кроватка для LGA микросхем выглядит примерно вот так:

Если присмотреться, то можно увидеть подпружиненные контакты.

Сам микросхема, в данном случае процессор ПК, имеет просто металлизированные площадки:

Для того, чтобы все работало, должно выполняться условие: микропроцессор должен быть плотно прижат к кроватке. Для этого используются разного рода защелки.

 

Корпус BGA

BGA (Ball Grid Array) – матрица из шариков.

Как мы видим, здесь выводы заменены припойными шариками. На одной такой  микросхеме можно разместить сотни шариков-выводов. Экономия места на плате просто фантастическая. Поэтому микросхемы в корпусе BGA применяют в производстве мобильных телефонов, планшетах, ноутбуках и в других микроэлектронных девайсах. О том, как перепаивать BGA, я  еще писал в  статье  Пайка BGA микросхем.

В красных квадратах я пометил микросхемы в корпусе BGA на плате мобильного телефона. Как вы видите, сейчас вся микроэлектроника строится именно на BGA микросхемах.

Технология BGA является апогеем микроэлектроники. В настоящее время мир перешел уже на технологию  корпусов microBGА, где расстояние между шариками еще меньше, и можно  уместить  даже тысячи(!) выводов под одной микросхемой!

Вот мы с вами и разобрали основные корпуса микросхем.

Начинающим радиолюбителям стоит просто запомнить три самых важных корпуса для микросхем – это DIP, SOIС (SOP) и QFP безо всяких модификаций и стоит также знать их различия. В основном именно эти типы корпусов  микросхем радиолюбители используют чаще всего в своей практике.

Приветствую! Сегодня речь пойдет о том, как добиться высокого качества монтажа на платах с большим количеством компонентов — до 1500шт (можно и больше при плотном монтаже или при сборке 1-2 плат одновременно — не более). Потребность в таком сложном монтаже обычно возникает при изготовлении первого макета или нескольких образцов, чтобы убедиться в правильности трассировки печатной платы (основных сложных моментов) или же при разовом производстве. После получения такого макета можно начинать отлаживать программное обеспечение и вносить корректировки в плату. Заводская сборка, в этом случае, не совсем подходит из-за ее стоимости, подготовки конструкторской документации, подборки компонентов, сроков, макетирования и многого другого (под катом картинки на 8Мб). Рис. 1. Готовая печатная плата с компонентами 0402 (обратная сторона). Итак, начнем с того, что определим, что нам понадобиться. Весь поверхностный монтаж будет производиться феном и паяльной пастой, так как это в разы быстрее и качественнее чем паяльником и припоем в проволоке. 1. Паяльная станция (например, Lukey 852D+ с насадкой 10мм). 2. Тонкий немагнитный пинцет (для установки компонентов). 3. Пинцет с широким захватом (для нанесения паяльной пасты). 4. Флюс (например, Amtech NC-559-ASM, или другой безотмывочный). 5. Паяльная паста (Solder paste W001). 6. Хороший свет и стол. 7. Кисточка/ванночка/спирт для промывки печатной платы. В процессе станет понятно что есть что, так что тут заострять внимание не будем. Для начала выполним все приготовления и поймем технологию пайки. Для того, чтобы спаять две поверхности, их необходимо сначала залудить, затем прислонить друг к другу, нагреть и после того, как олово полностью расплавится — остудить. Это вкратце. Качественная пайка не имеет вкраплений, раковин, трещин и имеет однородную структуру. Остывание припоя должно происходить в неподвижном состоянии, только в этом случае он застынет правильно. Паяльную пасту необходимо немного доработать. Для того, чтобы она хорошо накладывалась и растекалась равномерным слоем ее необходимо разбавить с флюсом в пропорции примерно 2:1 (хорошо размешать в однородную массу). В некоторых случаях пропорция может изменяться, например, если все контактные площадки имеют большую площадь, то припой должен быть несколько гуще и наоборот. Рис. 2. Паяльная паста. Для того, чтобы пошагово объяснить весь процесс монтажа спаяем часть небольшой платы на которой расположены различные компоненты. Первое, что необходимо сделать (если плата только с производства и чистая) — это нанести на нее припой. Самый простой и быстрый, при определенной сноровке, способ — это нанесение широким пинцетом (или шпателем). Ниже приведены слайды процесса нанесения припоя. За один раз необходимо брать небольшое количество припоя и аккуратно равномерным и тонким слоем наносить его на плату (как лопаткой). Нет необходимости наносить его исключительно на контактные площадки, в процессе прогрева, из-за большого количества флюса, лишнее олово перейдет на контактные площадки либо превратиться в шарики, которые необходимо перенести на контактные площадки вручную (далее будет описано как это делать).

Рис. 3. Процесс нанесения припоя на плату. Расстановка компонентов. Не все компоненты можно расставлять сразу после нанесения паяльной пасты. Например, элементы в корпусах LQFP с шагом выводов меньше чем 0,8 мм необходимо ставить немного позже — уже после первого прогрева феном, в противном случае, будут короткие замыкания между выводами, которые будет сложно удалить (конечно можно использовать «оплетку», но попробуем обходиться без нее). Итак, в первую очередь установим SMD конденсаторы, резисторы, диоды и т.д, компоненты в QFN корпусах. Для этого нам необходим тонкий немагнитный пинцет. Для быстрого и удобного поиска компонентов я использую поиск в Altium Designer (проект, соответственно сделан там же). Поиск компонентов выполняется слева направо, сверху вниз, выбираем компонент, например, конденсатор 100n, находим их все и устанавливаем на плату.
Рис. 4. Установка компонентов на плату. Если необходимо собрать несколько плат, то лучше устанавливать компоненты сразу на 2 или 4 платы, так как в этом случае уменьшается вероятности ошибки установки компонентов не на те места, также это значительно уменьшит общее время сборки. Для того, чтобы упростить сборку, компоненты могут быть помещены в кассу, тогда их удобнее доставать и быстро запоминается их местонахождение. После того, как все необходимые компоненты установлены можно приступать к прогреву и непосредственно пайке. Плата должна лежать на ровной поверхности, которая не боится сильного нагрева. В левой руке необходимо держать фен, в правой пинцет. Температура (выставленная на индикаторе) приблизительно 390 град. — это довольно высокая температура, но именно для этой станции такое значение является нормальным (также, если нет специальных ограничений по температуре пайки компонентов). Процесс пайки сводится к прогреву отдельных частей платы (делать это нужно как можно равномернее), на которых стоят компоненты, избегая перегревов и «вспучивания» текстолита. Для плат с маленьким количеством больших полигонов и 4-слоек температуру необходимо уменьшить до 360 град. Во время прогрева необходимо следить за тем, как плавится олово и одновременно пинцетом поправлять компоненты на контактных площадках. Особенно следите за компонентами типоразмера 0402, так как они начинают «плыть» на флюсе и могут перемешаться на плате. В процессе пайки олово скатывается в шарики, а между некоторыми контактными площадками образуются «залипоны» убирается это все с помощью компонента (например, конденсатора), захваченного пинцетом (главное запомнить с какого места взят компонент). Он собирает на себя лишнее олова, которое потом можно перенести на большие контактные площадки. Все это необходимо делать при прогреве платы, пока не высох флюс (его можно нанести отдельно если что-то не получилось с первого раза). После пайки первой партии компонентов плата выглядит примерно так: Рис. 5. Первый прогрев. Я намеренно не стал устанавливать SOIC, чтобы показать как удобнее его паять. Перед установкой компонентов в LQFP и SOIC необходимо нанести тонкий стой флюса на (залуженные!) контактные площадки — это сделает пайку более качественной. Далее устанавливаем оставшиеся компоненты. Замечу, что чем меньше шаг выводов у компонентов, тем точнее их нужно позиционировать. Например, STM32F107 в корпусе LQFP64 во время прогрева будет не поднять пинцетом, так как если он сдвинется хотя бы на половину шага выводов (а это всего 0,25 мм), то олово зальется на соседние контактные площадки. SOIC можно будет приподнять для предварительного прогрева платы, так же это актуально для компонентов в пластиковом корпусе (реле, разъемы, оптопары и т. д.). При втором прогреве уже нет необходимости прогревать всю плату, можно ограничиться теми местами, где установлены необходимые компоненты. После пайки и промывки плата выглядит так: Рис. 6. Второй прогрев. Данная плата имеет двухсторонний монтаж. При пайке компонентов с другой стороны нижние (установленные ранее) начнут съезжать. Чтобы этого не происходило, необходимо установить плату на монтажные стойки (закрепить в держателе) или поставить несколько разъемов, чтобы избежать соприкосновения уже припаянных компонентов с поверхностью. Для качественной пайки выводных компонентов, тоже имеется пару ухищрений. Я всегда использую припой с флюсом (например RA-0,5), диаметром, соответственно, 0,5 мм. Чтобы получилось правильное затекание припоя между металлизированным отверстием и выводом компонента необходимо, чтобы во время непосредственно процесса пайки всегда соприкасались четыре предмета: паяльник, контактная площадка, вывод компонента и припой, а делается это так: прислоняем паяльник к выводу так, чтобы он одновременно касался пояска «пада», затем подносим припой и прислоняем его к паяльнику, как можно ближе к выводу компонента и «паду». В результате этого припой будет затекать в разогретое отверстие и образует небольшой «наплыв», после чего необходимо убрать припой, а затем паяльник от вывода и «пада».
Рис. 7. Пайка выводных компонентов. В следующей статье я расскажу про установку BGA компонентов (BGA84, BGA78, BGA620 и даже BGA1084) с помощью фена. А также плюсы и минусы установки BGA при помощи специализированной инфракрасной паяльной станции. PS: Если есть какие-либо советы на тему ручного монтажа, с удовольствием выслушаю, также могу подсказать, если что-то осталось неясным.Используемые источники:

  • https://www.ruselectronic.com/tipy-korpusov-mikroskhem/
  • https://habr.com/post/247947/

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации