Андрей Смирнов
Время чтения: ~22 мин.
Просмотров: 3

Преобразователь частоты для электродвигателя: назначение, свойства, схемы подключения

В различных ситуациях может возникнуть необходимость преобразования частоты исходного тока в ток с напряжением регулируемой частоты. Это требуется, например, при работе асинхронных двигателей для изменения их скорости вращения. В этой статье будет рассмотрены назначение и принцип работы частотного преобразователя.

Что такое частотный преобразователь

Частотный преобразователь (ПЧ) – это электротехническое устройство, которое преобразовывает и плавно регулирует однофазный или трехфазный переменный ток с частотой 50 Гц в аналогичный по типу ток с частотой от 1 до 800 Гц. Такие устройства широко применяются для управления работой различных электрических машин асинхронного типа, например, для изменения частоты их вращения. Также существуют аппараты для использования в промышленных высоковольтных сетях.

Простые преобразователи регулируют частоту и напряжение в соответствии с характеристикой V/f, сложные приборы используют векторное управление.

Частотный преобразователь является технически сложным устройством и состоит не только из преобразователя частоты, но и имеет защиту от перегрузок по току, от перенапряжения и короткого замыкания. Также такое оборудование может иметь дроссель для улучшения формы сигнала и фильтры для уменьшения различных электромагнитных помех. Различают электронные преобразователи, а также электромашинные устройства.

Принцип работы частотного преобразователя

Электронный преобразователь состоит из нескольких основных компонентов: выпрямителя, фильтра, микропроцессора и инвертора.

Выпрямитель имеет связку из диодов или тиристоров, которые выпрямляют исходный ток на входе в преобразователь. Диодные ПЧ характеризуются полным отсутствием пульсаций, являются недорогими, но при этом надежными приборами. Преобразователи на основе тиристоров создают возможность для протекания тока в обоих направлениях и позволяют возвращать электрическую энергию в сеть при торможении двигателя.

Фильтр используется в тиристорных устройствах для снижения или исключения пульсаций напряжения. Сглаживание производится с помощью ёмкостных или индуктивно-ёмкостных фильтров.

Читайте также:  Как подключить однофазный электродвигатель — схема с конденсатором

Микропроцессор – является управляющим и анализирующим звеном преобразователя. Он принимает и обрабатывает сигналы с датчиков, что позволяет регулировать выходной сигнал с преобразователя частоты встроенным ПИД-регулятором. Также данный компонент системы записывает и хранит данные о событиях, регистрирует и защищает аппарат от перегрузок, короткого замыкания, анализирует режим работы и отключает устройство при аварийной работе.

Инвертор напряжения и тока используется для управления электрическими машинами, то есть для плавного регулирования частоты тока. Такое устройство выдает на выходе «чистый синус», что позволяет использовать его во многих сферах промышленности.

Принцип работы электронного частотного преобразователя (инвертора) заключается в следующих этапах работы:

  1. Входной синусоидальный переменный однофазный или трехфазный ток выпрямляется диодным мостом или тиристорами;
  2. При помощи специальных фильтров (конденсаторов) происходит фильтрация сигнала для снижения или исключения пульсаций напряжения;
  3. Напряжение преобразуется в трехфазную волну с определенными параметрами с помощью микросхемы и транзисторного моста;
  4. На выходе из инвертора прямоугольные импульсы преобразовываются в синусоидальное напряжение с заданными параметрами.

Виды преобразователей частоты

Существует несколько типов частотников, которые на данный момент являются самыми распространенными для производства и использования:

Электромашинные (электроиндукционные) преобразователи: используются в тех случаях, когда невозможно или нецелесообразно применение электронных ПЧ. Конструктивно такие устройства являются асинхронными двигателями с фазным ротором, которые работают в режиме генератора-преобразователя.

Данные устройства являются преобразователями со скалярным управлением. На выходе из данного аппарата создается напряжение заданной амплитуды и частоты для поддержания определенного магнитного потока в обмотках статора. Они применяются в тех случаях, когда не требуется поддерживать скорость вращения ротора в зависимости от нагрузки (насосы, вентиляторы и прочее оборудование).

Электронные преобразователи: широко применяется в любых условиях работы для различного оборудования. Такие устройства являются векторными, они автоматически вычисляют взаимодействие магнитных полей статора и ротора и обеспечивают постоянное значение частоты вращения ротора вне зависимости от нагрузки.

Читайте также:  Лучшие стабилизаторы напряжения для дома — сравнение популярных моделей

  1. Циклоконверторы;
  2. Циклоинверторы;
  3. ПЧ с промежуточным звеном постоянного тока:

</ol>

  • Частотный преобразователь источника тока;
  • Частотный преобразователь источника напряжения (с амплитудно- или широтно- импульсной модуляцией).

По сфере применения оборудование может быть:

  • для оборудования мощностью до 315 кВт;
  • векторные преобразователи для мощности до 500 кВт;
  • взрывозащищённые устройства для применения во взрывоопасных и запыленных условиях;
  • частотные преобразователи, монтируемые на электродвигатели;

Каждый тип частотного преобразователя имеет определенные преимущества и недостатки и применим для различного оборудования и нагрузок, а также условий работы.

Управление частотным преобразователем может быть ручным или внешним. Ручное управление осуществляется с пульта управления ПЧ, которым можно отрегулировать частоту вращения или остановить работу. Внешнее управление выполняется при помощи автоматических систем управления (АСУТП), которые могут контролировать все параметры устройства и позволяют переключать схему или режим работы (через ПЧ или байпас). Также внешнее управление позволяет программировать работу преобразователя в зависимости от условий работы, нагрузки, времени, что позволяет работать в автоматическом режиме.

Для чего может быть нужен электродвигателю частотный преобразователь

Применение частотных преобразователей позволяет снизить затраты на электроэнергию, расходы на амортизацию двигателей и оборудования. Их возможно использовать для дешевых двигателей с короткозамкнутым ротором, что снижает издержки производства.

Многие электродвигатели работают в условиях частой смены режимов работы (частые пуски и остановки, изменяющуюся нагрузку). Частотные преобразователи позволяют плавно запускать электродвигатель и снижают максимальный пусковой момент и нагрев оборудования. Это важно, например, в грузоподъемных машинах и позволяет снизить негативное влияние резких пусков, а также исключить раскачивание груза и рывки при остановке.

При помощи ПЧ можно плавно регулировать работу нагнетательных вентиляторов, насосов и позволяет автоматизировать технологические процессы (применяются в котельных, на горнодобывающих производствах, в нефтедобывающей и нефтеперерабатывающей сферах, на водопроводных станциях и других предприятиях).

Читайте также:  Что такое коэффициент трансформации трансформатора?

Использование частотных преобразователей в транспортерах, конвейерах, лифтах позволяет увеличить срок службы их узлов, так как снижает рывки, удары и другие негативные факторы при пусках и остановке оборудования. Они могут плавно увеличивать и уменьшать частоту вращения двигателя, осуществлять реверсивное движение, что важно для большого количества высокоточного промышленного оборудования.

Преимущества частотных преобразователей:

  1. Снижение затрат на электроэнергию: за счет снижения пусковых токов и регулирования мощности двигателя исходя из нагрузки;
  2. Увеличение надежности и долговечности оборудования: позволяет продлить срок эксплуатации и увеличить срок от одного технического облуживания до другого;
  3. Позволяет внедрить внешний контроль и управление оборудованием с удаленных компьютерных устройств и способность встраивания в системы автоматизации;
  4. Частотные преобразователи могут работать с любой мощностью нагрузки (от одного киловатта до десятков мегаватт);
  5. Наличие специальных компонентов в составе частотных преобразователей позволяет защитить от перегрузок, обрыва фазы и короткого замыкания, а также обеспечить безопасную работу и отключение оборудования при возникновении аварийной ситуации.

Конечно, глядя на такой список достоинств можно задаться вопросом, почему бы их не использовать для всех двигателей на предприятии? Ответ тут очевиден, увы, но это высокая стоимость частотников, их монтаж и наладка. Не каждое предприятие может позволить себе эти расходы.

Похожие статьи

Особенности и схема подключения частотного преобразователя к разным типам электродвигателейЧто такое сетевой фильтр, для чего он нужен и где применяетсяЧто такое варистор, основные технические параметры, для чего используетсяУстройство, виды и принцип действия асинхронных электродвигателейЧто такое контактор: назначение, принцип работы, виды, схемы подключенияПоверка электросчетчика: срок поверки и межповерочный интервалКак правильно выбрать и какой лучше поставить электросчетчик в квартируЧто делать если остановился или сломался электросчетчик в квартире?</h4>09.07.2019

cd8d38dc69f00962e6d8efb9f1c78f4b.jpg

Что такое преобразователь частоты (частотник)

Частотный преобразователь применяется вкупе с асинхронным двигателем, преобразуя в автоматическом режиме частоту переменного тока к требуемым параметрам. Таким образом прибор контролирует скорость и момент электродвигателей в непрерывном процессе. Используя электротехническое устройство, можно не только полностью автоматизировать производственные процессы, но и добиться существенной экономии электроэнергии – до 50%.

Современные преобразователи частоты

Рынок электротехнического оборудования представлен частотными преобразователями широкого спектра применения. Устройства могут быть как небольшой мощности, так и высоковольтными агрегатами. Современное оборудование обеспечивает непрерывное управления процессом в системах с асинхронными и синхронными двигателями.

Устройства управления частотой нашли широкое применение практически во всех отраслях промышленности и транспорта. Основная доля всей электроэнергии, производимой в мире, используется для работы электрических двигателей, а функция управления их работой возложена на частотные преобразователи.

Современные частотники применяются в качестве средств управления в следующих системах и оборудовании:

·  конвейерные механизмы;

·  подъемное оборудования (краны, лифты);

·  насосы и системы очистки воды;

·  станки промышленного назначения;

·  вентиляторы.

Правильный выбор устройства по заранее заданным критериям позволит обеспечить непрерывную и стабильную работу привода и сократить затраты на электроэнергию.

Разновидности частотных преобразователей

В зависимости от условий эксплуатации частотник должен иметь соответствующие технические характеристики и должный уровень защиты. Так, в простейшем случае прибор со степенью защиты IP 20 имеет стандартный корпус, надежно защищающий от влаги и пыли. Химическая и горнодобывающая промышленность требует использование устройств со степенью защиты IP 54 и IP 65. Модульная архитектура частотных преобразователей позволяет настроить прибор под индивидуальные условия и воспользоваться дополнительными опциями.

Для асинхронных электродвигателей

Асинхронные силовые агрегаты по степени использования в промышленности и быту занимают лидирующие позиции. Ввиду конструктивных особенностей эти приводы имеют свои недостатки, для устранения которых и было, на самом деле, создано устройство управления скоростью. Правильно подобранный контролер частоты позволяет снизить пусковой ток почти на 80% и добиться плавного регулирования процесса вращения ротора.

Для вентиляторов

Частотный преобразователь в вентиляционных системах имеет первоочередную значимость. Благодаря ему изменение скорости и частоты вращения вентилятора производится мягко и непрерывно. Стабильная и автоматическая регулировка работы оборудования настраивается на основании заранее заданных параметров, куда обычно входят температура и влажность воздуха, концентрация сторонних веществ и др. Существует опция для настройки автоматического включения/отключения системы или ее отдельных узлов.

Частотные преобразователи для насоса (оборудования)

Основным рабочим элементом современных насосов является электродвигатель, работа которого регулируется посредством рядом механических устройств. В недавнем прошлом такими механизмами выступала запорно-регулирующая арматура (вентили, задвижки, затворы). В современных насосных системах регулировка потока жидкости осуществляется с помощью частотных преобразователей. На сегодня частотные преобразователи могут работать в паре с насосом точно так же как и электродвигателями, что в свою очередь, может продлить срок эксплуатации насосного оборудования в несколько раз.

Возможности преобразователя частоты

Функциональные возможности современных частотников существенно расширены и позволяют автоматизировать работу электроприводов даже в самых сложных условиях.

Работа при нестабильном напряжении

Не все электрические сети могут обеспечить подключенное оборудование стабильным питанием. В идеале, современные преобразователи правильно выполняют свои функции в диапазоне напряжения питающей цепи 380-460 В, допустимое отклонение – 10%. Модели частотников, представленные на странице каталог позволяют сохранить работоспособность электродвигателя посредством автоматического перезапуска после кратковременного отключения (просадки) питания с плавным изменением скорости и момента мотора.

Работа на резонансных частотах

Собственная резонансная частота некоторых механизмов может вызывать недопустимые вибрации, часто являющиеся причиной выхода системы управления из строя. Благодаря функции исключения недопустимых частот работа частотника становится безопасной, а сам механизм защищен от возможной поломки.

Сетевой обмен

Для совместной работы электродвигателя и системы автоматического управления используются различные протоколы передачи данных. Наибольшее распространение получил протокол связи Modbus с интерфейсом RS-485, однако в зависимости от используемого оборудования вопрос об использовании того или иного протокола уточняется для каждого конкретного случая.

Оптимальный выбор преобразователя частоты сводится к соответствию его функциональности техническим характеристикам электродвигателя. На сайте компании «ЭНЕРГОПУСК» приведен огромный ассортимент электронных регулирующих устройств, где можно остановится на оптимальном выборе электротехнического прибора исходя из экономической целесообразности покупки и эксплуатации.

Мощность частотного преобразователя

Мощность является одним из наиболее основных параметров электропривода. При выборе частотника, в первую очередь, следует определится с его нагрузочной способностью. В соответствии с имеющейся номинальной мощностью двигателя выбирается ЧП , рассчитанный на такую же мощность. И такой выбор будет являться правильным при условии, что нагрузка на валу не будет динамично изменяться, ток не будет значительно превышать номинальное установленное значение, как для данного двигателя, так и устройства распределения частоты. Поэтому более корректным было бы производить выбор по максимальному значению тока потребляемого электродвигателем от ЧП с учетом перегрузочной способности последнего. Обычно способность к перегрузкам указывается в процентах от номинального тока совместно с максимально допустимым временем действия данной перегрузки до активации непосредственной защиты. Таким образом, для правильного выбора нужно знать характер перегрузок именно вашего механизма, в частности: каков уровень перегрузок, какова их длительность и как часто они появляются.

Напряжение сети для частотного преобразователя

Так же важным является вопрос о питающем напряжении. Наиболее распространенный случай — это питание от трехфазной промышленной сети 380В, но возможны варианты, когда привод рассчитан на работу от однофазной сети 220-240В. Как правило, последний ограничивается рядом мощностей до 3,7кВт. Существуют варианты и высоковольтного привода, дающие возможность управлять более мощными двигателями, с мощностями измеряющимися уже в МВт, при относительно меньших значения тока. 

Каждый из вариантов применим для различного рода решений, и зависит как от возможностей электроснабжения, так и от ряда возможностей обусловленных применением соответствующего привода.

Диапазон регулирования частотного преобразователя

Если скорость не будет падать ниже 10% от номинальной, то подойдет практически любой частотник , но если нужно снижать скорость и далее, обеспечивая при этом номинальный момент на валу, нужно убедиться в способности частотного преобразователя двигателя обеспечить работу на частотах, близких к нулю. Кроме того, с диапазоном регулирования частоты вращения связан еще один вопрос, который требует решения, — охлаждение электродвигателя. Обычно асинхронный эл.двигатель (с самовентиляцией) охлаждается вентилятором, закрепленным на его валу, поэтому при снижении скорости эффективность охлаждения резко падает. 

Некоторые электронные устройства для изменения частоты снабжены функцией контроля теплового режима с помощью обратной связи через датчик температуры установленного на самом двигателе. Существуют и другие варианты решения данного вопроса, но уже без использования данного устройства.

Необходимость режима торможения преобразователя частоты

Торможение выбегом (инерционное торможение), аналогично отключению двигателя от питающей сети, при этом процесс может занять продолжительное время. Особенно если это высокоинерционные механизмы. С помощью частотного распределения электроимпульса можно осуществить остановку или торможение с переходом на более низкую скорость работы за более короткий промежуток времени. Возможно несколько вариантов:

  • отдать в сеть электроэнергию (режим рекуперативного торможения);
  • выполнить остановку подачей на обмотки статора напряжения более низкой частоты или постоянного напряжения, тогда избыток запасенной кинетической энергии выделится в виде тепла через радиаторы преобразовывающие электроэнергию и сам двигатель (режим торможения постоянным током);
  • выполнить остановку или торможение с использованием тормозного прерывателя и комплекта тормозных резисторов

Целесообразность применения того или иного метода рассматривается в основном с точки зрения экономической выгоды. Так рекуперация в сеть более выгодна в плане экономии электроэнергии, привод с использованием тормозного сопротивления — более дешевое техническое решение, торможение двигателем вообще не требует дополнительных затрат, но в свою очередь возможно только при малых мощностях.

Преобразователи частоты как способ управления электродвигателем

Некоторые механизмы могут управляться от задающего сигнала на условиях плавного изменения оборотов, а в некоторых случаях требуется работа на фиксированных скоростях. Причем, и в том и другом случае возможно управление, как с пульта управления ЧП, так и с использования клемм цепей управления электронного устройства плавно понижая или повышая ток, кнопок, переключателей и потенциометров. 

При реализации последнего варианта необходимо убедиться в достаточном количестве требуемых входов. В случае использования внешнего управляющего устройства (контроллера, логического реле и т.д.), необходимо убедиться в согласовании по техническим параметрам. Обычно это токовые или вольтовый сигналы с диапазонами 0%u202620мА, 4%u202620мА и 0%u202610В соответственно. Если управление электропривода происходит по сети, то необходимы наличие соответствующего интерфейса и поддержка соответствующего протокола передачи данных. 

Управление двигателем может проходить автоматически, для этого необходимо наличие ПИД-регулятора и возможность организовать обратную связь от датчика контролируемого параметра

Индикация параметров электропривода

В основном любой преобразователь изменения частоты имеет панель с дисплеем и необходимыми органами управления для проведения пуско-наладки и управления. Этот же дисплей в процессе функционирования возможно использовать для отображения каких-либо параметров. 

Дисплеи могут отличаться количеством строчек, а значит, информативностью, типом самого дисплея (семисегментный индикаторный либо жидкокристаллический). В случае невозможности во время работы наблюдать параметры на дисплее самого эл.привода, используя аналоговые и дискретные (релейные, транзисторные) выходы, можно вывести необходимую информацию на пульт дистанционного управления. 

Помимо индикации параметров (состояния «работа», «авария», «режим торможения», значение тока нагрузки, обороты двигателя, частота и напряжение питающей сети и др.) некоторые устройства имеют возможность формировать сигналы управления посредством тех же аналоговых и дискретных выходов, тем самым реализовывать более сложные системы управления.

Функции защиты 

Кроме функций управления на электронное устройство изменения частоты обычно возлагаются функции защиты. Как правило, основным набором являются:

  • ограничение тока при пуске, при продолжительной работе, при остановке и коротком замыкании;
  • защита от перенапряжения и пониженного напряжения;
  • контроль температуры двигателя;
  • защита от перегрева радиатора;
  • защита выходных IGBT.

Монтаж и установка частотного преобразователя

Важным моментом является выбор предполагаемого места установки частотного преобразователя, а отсюда условий его эксплуатации:

  • ограничение тока при пуске, при продолжительной работе, при остановке и коротком замыкании
  • диапазон рабочих температур
  • влажность
  • высотность
  • вибрации
  • степень защиты (IP)

Компактность в некоторых случаях является решающим фактором на этапе выбора. Каковы габариты устанавливаемого привода и способ установки? Возможно ли радиаторы силовой части ЧП вынести на тыльную часть, обеспечив при меньших габаритах шкафа достаточную вентиляцию? 

Информация об условиях окружающей среды является неотъемлемой частью технических характеристик, при выборе частотного преобразователя, и не соблюдение их при установке может привести к выходу  его из строя . В процессе установки возникает множество вопросов, но это одни из первых с которыми приходится столкнуться.

Функциональные возможности

Современные электроприводы имеют множество функциональных возможностей. Перечислим часто встречающиеся по мере их важности.

Работа при нестабильном питании

Это актуальный параметр особенно при использовании в России. Отсюда вопрос: «каков допустимый диапазон питающего напряжения?». Хорошим диапазоном напряжения питающей сети для современных частотников является 380-460 В с отклонением ±10%. Следует уточнить каковы действия частотного преобразователя при просадке или полном отключении питания на короткое или очень короткое время? 

Возможно ли сохранение работоспособности с пропорциональным изменением скорости, момента двигателя, автоматический перезапуск после восстановления питания, подхват скорости работающего двигателя при повторном пуске после пропадания питания и т.д. Если имеющиеся функциональные возможности обеспечивают допустимый режим работы механизма с сохранением его работоспособного состояния, то можно считать, что вопрос о нестабильном питании для вас снят, в противном случае стоит либо решить вопрос с электроснабжением, либо задуматься о выборе другого оборудования.

Исключение работы на резонансных частотах.

Некоторые механизмы имеют собственные резонансные частоты при работе на которых наблюдаются недопустимые вибрации, что может привести к поломке оборудования. В таких случаях функция исключения недопустимых частот в преобразователе позволит обезопасить механизм от его преждевременного выхода из строя. Сетевой обмен

Обычно требуется либо включить привод в систему автоматического управления, либо предусмотреть перспективу такого использования систем изменения частоты электрического тока в будущем. Для этого необходимо разобраться со стандартом и протоколом связи. 

В настоящее время существует большое их разнообразие, позволяющее сделать работу в режиме САУ наиболее оптимальной. Отличаться они могут удаленностью, количеством связываемых объектов и помехозащищенностью. 

Наиболее распространенный вариант %u2013 это интерфейс RS-485 и протокол передачи данных Modbus, но для согласования работы в составе системы автоматического управления этот вопрос следует более подробно уточнить у поставщика либо у производителя. Автоматическая настройка

На сегодняшний день выбор электроприводов довольно велик, но еще встречаются простейшие модели в которых не производится настройка под параметры двигателя, а точнее его обмотки. В более поздних моделях требуется вводить ряд дополнительных справочных данных. 

Принцип управления ЧП.

В наиболее распространенном частотно-регулируемом приводе на основе асинхронных двигателей с короткозамкнутым ротором применяются скалярное и векторное управление.

Скалярное управление строится на принципе постоянства отношения выходного напряжения частотного преобразователя к его выходной частоте. То есть при изменении частоты амплитуда напряжения изменяется таким образом, что отношение максимального момента электродвигателя текущему моменту нагрузки остается неизменным. Это отношение называется перегрузочная способность электромотора. 

Важным достоинством скалярного метода является возможность одновременного управления группой электрических машин. Скалярное управление применимо для большинства практических случаев использования частотного электропривода с диапазоном регулирования частоты вращения до 1:40

Векторное управление, в свою очередь, позволяет существенно повысить точность поддержания выходной частоты, точность регулирования по скорости, а также точность поддержания момента. Так же отличительной особенностью векторного регулирования является возможность управлять моментом на валу мотора при его работе на частотах близких к нулю. Возможность использования нескольких наборов параметров. Последнее поколение преобразователей имеет функциональную возможность выбирать различные комбинации настроек для нескольких режимов работы одного и того же электромеханического преобразователя или для нескольких, имеющих различные технические параметры. 

Количество функций описанных выше — малая часть из их огромного множества, исчисляемого уже сотнями в оборудовании последнего поколения. Выбирать необходимые нужно исходя из тех требований, которые диктуют предполагаемые области их применения. Вряд ли этап подбора частотного преобразователя ограничивается решением выше указанных вопросов, но это те из них с которыми приходится столкнуться на первоначальном этапе. 

Выбор частотника, как высокотехнологичного оборудования, сам по себе не прост и в конечном итоге сводится к экономической целесообразности приобретения и использования. Отсюда, не стоит слишком завышать требования и тем самым переплачивать за неиспользуемые опции, и в тоже время отказываться от необходимых, в надежде сделать механизм, привод и систему в целом работоспособными.

Подобрать Частотные преобразователи

Остались вопросы? Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:8-800-700-11-54 (8-18, Пн-Вт)

Преимущества регистрацииВы сможете:

  • Приобретать оборудование со скидкой сразу после регистрации
  • Совершать покупки намного быстрее и удобнее
  • Следить за выполнением заказов
  • Смотреть историю своих заказов, получать рекомендации
  • Получить накопительную систему скидок на все оборудование
  • Участвовать в акциях
  • Получать первыми информацию о новых товарах и услугах
  • Видеть документы по отгрузкам
  • Получать консультации у специалиста, прикрепленного к вашей компании

Получите доступ ко всем предложениямВойдите под своим логином или пройдите легкую процедуру регистрации и получите доступ ко всем горячим предложениям

Трехфазные асинхронные двигатели нашли самое широкое применение в промышленности и других областях. Современное оборудование просто невозможно представить без этих агрегатов. Одной из важнейших составляющих рабочего цикла машин и механизмов является их плавный пуск и такая же плавная остановка после выполнения поставленной задачи. Такой режим обеспечивается путем использования преобразователей частоты. Эти устройства проявили себя наиболее эффективными в больших электродвигателях, обладающих высокой мощностью.

С помощью преобразователей частоты успешно выполняется регулировка пусковых токов, с возможностью контроля и ограничения их величины до нужных значений. Для правильного использования данной аппаратуры необходимо знать принцип работы частотного преобразователя для асинхронного двигателя. Его применение позволяет существенно увеличить срок службы оборудования и снизить потери электроэнергии. Электронное управление, кроме мягкого пуска, обеспечивает плавную регулировку работы привода в соответствии с установленным соотношением между частотой и напряжением.

Содержание

Что такое частотный преобразователь

Основной функцией частотных преобразователей является плавная регулировка скорости вращения асинхронных двигателей. С этой целью на выходе устройства создается трехфазное напряжение с переменной частотой.

Преобразователи частоты нередко называются инверторами. Их основной принцип действия заключается в выпрямлении переменного напряжения промышленной сети. Для этого применяются выпрямительные диоды, объединенные в общий блок. Фильтрация тока осуществляется конденсаторами с высокой емкостью, которые снижают до минимума пульсации поступающего напряжения. В этом и заключается ответ на вопрос для чего нужен частотный преобразователь.

В некоторых случаях в схему может быть включена так называемая цепь слива энергии, состоящая из транзистора и резистора с большой мощностью рассеивания. Данная схема применяется в режиме торможения, чтобы погасить напряжение, генерируемое электродвигателем. Таким образом, предотвращается перезарядка конденсаторов и преждевременный выход их из строя. В результате использования частотников, асинхронные двигатели успешно заменяют электроприводы постоянного тока, имеющие серьезные недостатки. Несмотря на простоту регулировки, они считаются ненадежными и дорогими в эксплуатации. В процессе работы постоянно искрят щетки, а электроэрозия приводит к износу коллектора. Двигатели постоянного тока совершенно не подходят для взрывоопасной и запыленной среды.

В отличие от них, асинхронные двигатели значительно проще по своему устройству и надежнее, благодаря отсутствию подвижных контактов. Они более компактные и дешевые в эксплуатации. К основному недостатку можно отнести сложную регулировку скорости вращения традиционными способами. Для этого было необходимо изменять питающее напряжение и вводить дополнительные сопротивления в цепь обмоток. Кроме того, применялись и другие способы, которые на практике оказывались неэкономичными и не обеспечивали качественной регулировки скорости. Но, после того как появился преобразователь частоты для асинхронного двигателя, позволяющий плавно регулировать скорость в широком диапазоне, все проблемы разрешились. Одновременно с частотой изменяется и подводимое напряжение, что позволяет увеличить КПД и коэффициент мощности электродвигателя. Все это позволяет получить высокие энергетические показатели асинхронных двигателей, продлить срок их эксплуатации.

Принцип действия частотного преобразователя

Эффективное и качественное управление асинхронными электродвигателями стало возможно за счет использования совместно с ними частотных преобразователей. Общая конструкция представляет собой частотно-регулируемый привод, который позволил существенно улучшить технические характеристики машин и механизмов.

В качестве управляющего элемента данной системы выступает преобразователь частоты, основной функцией которого является изменение частоты питающего напряжения. Его конструкция выполнена в виде статического электронного узла, а формирование переменного напряжения с заданной изменяемой частотой осуществляется на выходных клеммах. Таким образом, за счет изменения амплитуды напряжения и частоты регулируется скорость вращения электродвигателя.

Управление асинхронными двигателями осуществляется двумя способами:

  • Скалярное управление действует в соответствии с линейным законом, согласно которому амплитуда и частота находятся в пропорциональной зависимости между собой. Изменяющаяся частота приводит к изменениям амплитуды поступающего напряжения, оказывая влияние на уровень крутящего момента, коэффициент полезного действия и коэффициент мощности агрегата. Следует учитывать зависимость выходной частоты и питающего напряжения от момента нагрузки на валу двигателя. Для того чтобы момент нагрузки был всегда равномерным, отношение амплитуды напряжения к выходной частоте должно быть постоянным. Данное равновесие как раз и поддерживается частотным преобразователем.
  • Векторное управление удерживает момент нагрузки в постоянном виде во всем диапазоне частотных регулировок. Повышается точность управления, электропривод более гибко реагирует на изменяющуюся выходную нагрузку. В результате, момент вращения двигателя находится под непосредственным управлением преобразователя. Нужно учитывать, что момент вращения образуется в зависимости от тока статора, а точнее – от создаваемого им магнитного поля. Под векторным управлением фаза статорного тока изменяется. Эта фаза и есть вектор тока осуществляющий непосредственное управление моментом вращения.

Настройка частотного преобразователя для электродвигателя

Для того чтобы преобразователь частоты для асинхронного двигателя в полном объеме выполнял свои функции, его необходимо правильно подключить и настроить. В самом начале подключения в сети перед прибором размещается автоматический выключатель. Его номинал должен совпадать с величиной тока, потребляемого двигателем. Если частотник предполагается эксплуатировать в трехфазной сети, то автомат также должен быть трехфазным, с общим рычагом. В этом случае при коротком замыкании на одной из фаз можно оперативно отключить и другие фазы.

Ток срабатывания должен обладать характеристиками, полностью соответствующими току отдельной фазы электродвигателя. Если частотный преобразователь планируется использовать в однофазной сети, в этом случае рекомендуется воспользоваться одинарным автоматом, номинал которого должен в три раза превышать ток одной фазы. Независимо от количества фаз, при установке частотника, автоматы не должны включаться в разрыв заземляющего или нулевого провода. Рекомендуется использовать только прямое подключение.

При правильной настройке и подключении частотного преобразователя, его фазные провода должны соединяться с соответствующими контактами электродвигателя. Предварительно обмотки в двигателе соединяются по схеме «звезда» или «треугольник», в зависимости от напряжения, выдаваемого преобразователем. Если оно совпадает с меньшим значением, указанным на корпусе двигателя, то применяется соединение треугольником. При более высоком значении используется схема «звезда».

Далее выполняется подключение частотного преобразователя к контроллеру и пульту управления, который входит в комплект поставки. Все соединения осуществляются в соответствии со схемой, приведенной в руководстве по эксплуатации. Рукоятка должна находиться в нейтральном положении, после чего включается автомат. Нормальное включение подтверждается световым индикатором, загорающимся на пульте. Для того чтобы преобразователь заработал, нажимается кнопка RUN, запрограммированная по умолчанию.

После незначительного поворота рукоятки, двигатель начинает постепенно вращаться. Для переключения вращения в обратную сторону, существует специальная кнопка реверса. Затем с помощью рукоятки настраивается нужная частота вращения. На некоторых пультах вместо частоты вращения электродвигателя, отображаются данные о частоте напряжения. Поэтому рекомендуется заранее внимательно изучить интерфейс установленной аппаратуры.

Частотные преобразователи для асинхронных двигателей

Благодаря частотным преобразователям, работа современных асинхронных двигателей отличается высокой эффективностью, устойчивостью и безопасностью. Это особенно важно, поскольку каждый электродвигатель отличается индивидуальными особенностями режима работы. Поэтому оптимизации параметров питания агрегатов с использованием преобразователей частоты придается большое значение. Когда частотный преобразователь выбирается для каких-либо конкретных целей, в этом случае должны обязательно учитываться его рабочие параметры.

Нормальная работа устройства будет зависеть от типа электродвигателя, его мощности, диапазона, скорости и точности регулировок, а также от поддержания стабильного момента вращения вала. Эти показатели имеют первостепенное значение и должны органично сочетаться с габаритами и формой аппарата. Следует обратить особое внимание на то, как расположены элементы управления и будет ли удобно им пользоваться.

Рекомендуем статьи по теме

Схема частотного преобразователя асинхронного двигателя

Принцип работы частотного преобразователя

Частотные преобразователи: принцип работы

Асинхронный двигатель

Схема частотного преобразователя

Регулировка оборотов асинхронного двигателя

Используемые источники:

  • https://odinelectric.ru/equipment/chto-takoe-chastotnyj-preobrazovatel
  • https://epusk.ru/articles/chastotnye-preobrazovateli/chastotnyy-preobrazovatel-chto-eto/
  • https://electric-220.ru/news/princip_raboty_chastotnogo_preobrazovatelja_dlja_asinkhronnogo_dvigatelja/2017-03-30-1215

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации