Микросхема TL431 — это регулируемый стабилитрон. Используется в роли источника опорного напряжения в схемах различных блоков питания.
Технические характеристики TL431
- напряжение на выходе: 2,5…36 вольт;
- выходное сопротивление: 0,2 Ом;
- прямой ток: 1…100 мА;
- погрешность: 0,5%, 1%, 2%;
Функциональная схема
Цоколевка TL431
TL431 имеет три вывода: катод, анод, вход.
Аналоги TL431
Отечественными аналогами TL431 являются:
- КР142ЕН19А
- К1156ЕР5Т
К зарубежным аналогам можно отнести:
- KA431AZ
- KIA431
- HA17431VP
- IR9431N
- AME431BxxxxBZ
- AS431A1D
- LM431BCM
Регулируемый стабилитрон TL431
Схемы включения TL431
Микросхема стабилитрон TL431 может использоваться не только в схемах питания. На базе TL431 можно сконструировать всевозможные световые и звуковые сигнализаторы. При помощи таких конструкций возможно контролировать множество разнообразных параметров. Самый основной параметр — контроль напряжения.
Переведя какой-нибудь физический показатель при помощи различных датчиков в показатель напряжения, возможно изготовить прибор, отслеживающий, например, температуру, влажность, уровень жидкости в емкости, степень освещенности, давление газа и жидкости. ниже приведем несколько схем включения управляемого стабилитрона TL431.
Стабилизатор тока на TL431
Данная схема является стабилизатором тока. Резистор R2 выполняет роль шунта, на котором за счет обратной связи устанавливается напряжения 2,5 вольт. В результате этого на выходе получаем постоянный ток равный I=2,5/R2.
Индикатор повышения напряжения
Работа данного индикатора организована таким образом, что при потенциале на управляющем контакте TL431 (вывод 1) меньше 2,5В, стабилитрон TL431 заперт, через него проходит только малый ток, обычно, менее 0,4 мА. Поскольку данной величины тока хватает для того чтобы светодиод светился, то что бы избежать этого, нужно просто параллельно светодиоду подсоединить сопротивление на 2…3 кОм.
В случае превышения потенциала, поступающего на управляющий вывод, больше 2,5 В, микросхема TL431 откроется и HL1 начнет гореть. Сопротивление R3 создает нужное ограничение тока, протекающий через HL1 и стабилитрон TL431. Максимальный ток проходящий через стабилитрон TL431 находится в районе 100 мА. Но у светодиода максимально допустимый ток составляет всего 20 мА. Поэтому в цепь светодиода необходимо добавить токоограничивающий резистор R3. Его сопротивление можно рассчитать по формуле:
R3 = (Uпит. – Uh1 – Uda)/Ih1
где Uпит. – напряжение питания; Uh1 – падение напряжения на светодиоде; Uda – напряжение на открытом TL431 (около 2 В); Ih1 – необходимый ток для светодиода (5…15мА). Также необходимо помнить, что для стабилитрона TL431 максимально допустимое напряжение составляет 36 В.
Величина напряжения Uз при котором срабатывает сигнализатор (светится светодиод), определяется делителем на сопротивлениях R1 и R2. Его параметры можно подсчитать по формуле:
R2 = 2,5 х Rl/(Uз — 2,5)
Если необходимо точно выставить уровень срабатывания, то необходимо на место сопротивления R2 установить подстроечный резистор, с бОльшим сопротивлением. После окончания точной настройки, данный подстроичник можно заменить на постоянный.
Иногда необходимо проверять несколько значений напряжения. В таком случае понадобятся несколько подобных сигнализатора на TL431 настроенных на свое напряжение.
Проверка исправности TL431
Вышеприведённой схемой можно проверить TL431, заменив R1 и R2 одним переменным резистором на 100 кОм. В случае, если вращая движок переменного резистора светодиод засветится , то TL431 исправен.
Индикатор низкого напряжения
Разница данной схемы от предшествующей в том, что светодиод подключен по-иному. Данное подключение именуется инверсным, так как светодиод светится только когда микросхема TL431 заперта.
Если же контролируемое значение напряжения превосходит уровень, определенный делителем Rl и R2, микросхема TL431 открывается, и ток течет через сопротивление R3 и выводы 3-2 микросхемы TL431. На микросхеме в этот момент существует падение напряжения около 2В, и его явно не хватает для свечения светодиода. Для стопроцентного предотвращения загорания светодиода в его цепь дополнительно включены 2 диода.
В момент, когда исследуемая величина окажется меньше порога определенного делителем Rl и R2, микросхема TL431 закроется, и на ее выходе потенциал будет значительно выше 2В, вследствие этого светодиод HL1 засветится.
Индикатор изменения напряжения
Если необходимо следить всего лишь за изменением напряжения, то устройство будет выглядеть следующим образом:
В этой схеме использован двухцветный светодиод HL1. Если потенциал ниже порога установленного делителем R1 и R2, то светодиод горит зеленым цветом, если же выше порогового значения, то светодиод горит красным цветом. Если же светодиод совсем не светится, то это означает что контролируемое напряжение на уровне заданного порога (0,05…0,1В).
Работа TL431 совместно с датчиками
Если необходимо отслеживать изменение какого-нибудь физического процесса, то в этом случае сопротивление R2 необходимо поменять на датчик, характеризующейся изменением сопротивления вследствие внешнего воздействия.
Пример такого модуля приведен ниже. Для обобщения принципа работы на данной схеме отображены различные датчики. К примеру, если в качестве датчика применить фототранзистор, то в конечном итоге получится фотореле, реагирующее на степень освещенности. До тех пор пока освещение велико, сопротивление фототранзистора мало.
Вследствие этого напряжение на управляющем контакте TL431 ниже заданного уровня, из-за этого светодиод не горит. При уменьшении освещенности увеличивается сопротивление фототранзистора. По этой причине увеличивается потенциал на контакте управления стабилитрона TL431. При превышении порога срабатывания (2,5В) HL1 загорается.
Данную схему можно использовать как датчик влажности почвы. В этом случае вместо фототранзистора нужно подсоединить два нержавеющих электрода, которые втыкают в землю на небольшом расстоянии друг от друга. После высыхания почвы, сопротивление между электродами возрастает и это приводит к срабатыванию микросхемы TL431, светодиод загорается.
Если же в качестве датчика применить терморезистор, то можно сделать из данной схемы термостат. Уровень срабатывания схемы во всех случаях устанавливается посредством резистора R1.
TL431 в схеме со звуковой индикацией
Помимо приведенных световых устройств, на микросхеме TL431 можно смастерить и звуковой индикатор. Схема подобного устройства приведена ниже.
Данный звуковой сигнализатор можно применить в качестве контроля за уровнем воды в какой-либо емкости. Датчик представляет собой два нержавеющих электрода расположенных друг от друга на расстоянии 2-3 мм.
Как только вода коснется датчика, сопротивление его понизится, и микросхема TL431 войдет в линейный режим работы через сопротивления R1 и R2. В связи с этим появляется автогенерация на резонансной частоте излучателя и раздастся звуковой сигнал.
Калькулятор для TL431
Для облегчения расчетов можно воспользоваться калькулятором:
Скачать калькулятор для TL431(103,4 KiB, скачано: 25 132)Скачать datasheet TL431 на русском(702,6 KiB, скачано: 16 769)
182002.08.2019
Устройство TL431 является стабилизатором напряжения и программируемым источником опорного напряжения. Оно является наиболее популярным в сфере использования импульсных источников питания. В статье объясняется, что это такое, имеется описание того, где и как используются TL431 и TL431A, рассказывается, какие существуют особенности конструкции. Также указаны технические характеристики и прилагаются схемы подключения и применения устройства.
Что это такое
Параллельный стабилизатор TL431 работает так же, как стандартный стабилизатор. Различие уровня напряжения выхода и входа компенсируется благодаря мощному транзистору биполярного типа. Стабилизация будет лучше при условии того, что обратная связь поступает с выхода самого стабилизатора.
Резистор R1 должен быть рассчитан на минимальный ток, который равен 5 мА. Резисторы R2 и R3 рассчитываются аналогично, как для стабилизатора параметрического типа. Через каждый резистор протекает ток, у которого сила обратно пропорциональна значению сопротивления резистора. Существует два типа соединений резисторов: параллельное и последовательное соединение в форме цепи.
Где и как используется
Такие устройства, как правило, используются для компенсации колебаний напряжения в сети. Например, когда включена большая машина, потребность в энергии внезапно становится намного выше. Стабилизатор напряжения компенсирует изменение нагрузки. Стабилизаторы напряжения обычно работают в диапазоне напряжений, например, 150-240 В или 90-280 В.
Стабилизаторы напряжения используются в таких устройствах, как блоки питания компьютеров, где они стабилизируют напряжения постоянного тока. В автомобильных генераторах и центральных электростанциях-генераторах стабилизаторы напряжения контролируют мощность установки.
Выпускать устройство TL431 начали в 1977 году. Оно применяется в качестве источника опорного напряжения в схемах различных блоков питания ТВ, DVD, тюнеров и других разновидностей видео- и аудиотехники.
Также устройство необходимо для реализации обратной связи: выходное напряжение очень большое или же очень маленькое. Эксплуатируя участок цепи, который называется бандгап (источник опорного напряжения; его величина определяется шириной запрещённой зоны), TL431 является стабильным источником опорного напряжения в широких температурных диапазонах.
Особенности конструкции
У TL431 есть альтернативная версия TL43LI, у которой более лучшая стабильность, а также более низкий температурный дрейф (VI (dev)). Также у улучшенной версии более низкий опорный ток, которой необходим для повышения уровня точности всей системы.
Устройство TL431 является трёхконтактным и регулируется шунтирующим регулятором с термической стабильностью. Напряжение на выходе может устанавливаться между значением источника опорного напряжения (Vref) 2.5 и 36 В с двумя внешними резисторами. У устройства на выходе стандартный электрический импенданс – 0,2 Ом. Схема активного выхода обеспечивает очень точный способ включения. Эта возможность делает аппарат превосходной заменой диодов Зенера (стабилитронов) во многих областях применения, таких как встроенное регулирование и переключение источников питания.
Другая версия устройства – TL432 – имеет те же функциональные и технические характеристики, что и верися TL431, но имеет различные выводы для цоколевки DBV, DBZ и PK. Обе версии TL431 и TL432 представлены в трех классах с изначальными температурными пределами (при 25 градусах) 0.5%, 1% и 2% для B, A и стандартного класса соответственно. Более того, низкий дрейф на выходе в зависимости от температуры обеспечивает хорошую стабильность во всем диапазоне рабочих температур.
Цоколевка TL431 имеет следующий вид:
Распиновка TL431 выглядит так:
Технические характеристики TL431 и TL431A
У TL431A и TL431 такие параметры:
- Мощность составляет 0.2 Вт.
- Электрический ток на выходе достигает 100 мА.
- Напряжение на выходе варьируется от 2,5 до 36 В.
- Рабочая температура TL431 в диапазоне от 0 до +70 градусов.
- Рабочая температура TL431A варьируется от -40 до +85 градусов.
Также важны другие параметры.
Выходное напряжение
Оно может поддерживаться постоянным только в указанных пределах.
Регулировка нагрузки
Эта характеристика является изменением выходного напряжения для данного текущего тока нагрузки
Линейное регулирование или регулирование на входе
Это степень, в которой выходное напряжение претерпевает изменения с изменением входного (питающего) напряжения. Это аналогично отношению изменения выходного сигнала к входному или изменению выходного напряжения за весь промежуток времени.
Температурный коэффициент выходного напряжения
Это показатель изменения температуры (усредненное по заданному температурному диапазону).
Изначальная точность регулятора напряжения (или точность напряжения)
Оно отображает ошибку в выходном напряжении для заданного регулятора без учета температурного фактора на точность вывода.
Падение напряжения
Показатель – минимальная разница между входным и выходным напряжением. Для этой разницы регулятор все еще может подавать указанный ток. Дифференциальный ток ввода-вывода, при котором регулятор напряжения не будет выполнять свою функцию, – падение напряжения. Дальнейшее снижение входного напряжения может привести к понижению выходного напряжения. Данное значение зависит от тока нагрузки и температуры перехода.
Пусковой ток или импульсный входной ток
Также называется импульсный выброс при включении. Данный параметр отображает максимальный мгновенный входной ток, который потребляется устройством во время первого включения. Период длительности пускового тока – полсекунды (или несколько миллисекунд), тем не менее он почти всегда высок. Учитывая это, он является опасным, так как может постепенно сжигать детали (в течение нескольких месяцев), особенно если нет соответствующей защиты от такого типа тока.
Ток покоя в цепи регулятора
Этот электрический ток потребляется внутри цепи. Он недоступен для нагрузки и измеряется как входной ток без подключения нагрузки.
Переходная реакция
Эта реакция происходит, когда случается внезапное изменение электротока нагрузки или же входного напряжения.
Расчёт напряжения TL431
Схемы применения TL431
Для того, чтобы правильно подключить, важно соблюдать технику безопасности и следовать последовательности, как, например, при применении схемы подключении двухклавишного выключателя или при применении схемы подключения узо.
Работа микросхемы
Извне принцип работы аппарата выделяется довольно несложно. Если подать на контакт ref напряжение, которое превышает 2 В, тогда выходной транзистор проведёт электрически ток между анодом и катодом. Ток, который идёт к микросхеме, в блоке питания в таком случае увеличивается. Это вызывает уменьшение мощности блока питания. Затем происходит уменьшение напряжения до допустимого уровня. Следовательно, для блока питания применяют TL431 с целью того, чтобы поддерживалось стабильное выходное напряжение.
Одна из самых важных частей микросхемы – источник опорного напряжения. Он эквивалентен ширине запрещённой зоны. Основные составляющие есть на фото кристалла – пространство эммитера транзистора Q5 в восемь раз превышает Q4. Так, два транзистора имеют разные реакции на температуру. Объединение выходных сигналов с транзисторов происходит посредство объединения через резисторы R4, R3 и R2 в необходимой пропорции с целью компенсации эффектов температуры. Итого, формируется стабильный опорный сигнал.
В компаратор по температуре из стабилизированной запрещённой зоны посылается напряжение. Входом компаратора служат Q9 и Q8, Q1 и Q6. Выход же компатора идёт через Q10, чтобы управлять резистором Q11 (выходной).
Схема включения TL431
Схема включения и контроля напряжения TL431A
Нередко терморезистор выполняет функцию датчика температуры, уменьшая степень своего сопротивления в случае возрастания температуры. Это происходит по причине отрицательного температурного коэффициента сопротивления (ТКС). Те резисторы, у которых сопротивление увеличивается вместе с увеличением температуры (с положительным значением ТКС), имеют название позисторы. В этом терморегуляторе в случае превышения температуры заданного лимита, заработает реле или любое другое устройство с подобными функциями. Оно сразу же отключит нагрузку или включит систему охлаждения в зависимости от ситуации.
Данная схема имеет малый гистерезис, и чтобы его увеличить, нужно ввести ООС (отрицательная обратная связь) между выводами 1-3. К примеру, подстроченный резистор с сопротивлением 1.0-0.5 мОм. Надо подобрать экспериментальным путём подобрать в зависимости от требуемого гистерезиса. Если требуется, чтобы устройство срабатывало во время температурного снижения, тогда следует поменять местами регуляторы и датчик. Иначе говоря, включить в верхнее плечо термистор, а в нижнее – переменное сопротивление с самим резистором.
Подключение устройства TL431 требует внимания и является ответственной операцией, при которой важно не пренебрегать правилами безопасности, как например при подключении электроплиты.








- http://www.joyta.ru/4883-primenenie-reguliruemogo-stabilitrona-tl431/
- https://stroyvopros.net/elektrika/poleznaya-informatsiya/kak-podklyuchit-ustroystvo/shema-vklyucheniya-tl431.html
- https://usamodelkina.ru/15262-linejnyj-stabilizator-naprjazhenija-s-regulirovkoj-na-tl431-i-npn-tranzistorah.html



Транзисторы: принцип работы, схема подключения, отличие биполярного от полевого
Как сделать стабилизатор тока для светодиодов?
Как сделать стабилизатор тока для светодиодов?
Как сделать стабилизатор тока для светодиодов?
Как сделать стабилизатор тока для светодиодов?
Самодельный регулируемый стабилизатор тока от 0,05 до 5 А