- Цена: примерно 1500 р.
 
                 Наткнулся в интернете на схему лабораторного блока питания, да еще и с управлением от компьютера, и не смог устоять. Детали решил брать в российских магазинах, потому что доллар, санкции, ну и все такое. Вот что из этого получилось…  Лабораторный блок питания нужен для запитывания различных махараек устройств на этапе разработки. Первое подобие лабораторника я сделал лет в 16. Это был леденящий душу ужас, который, тем не менее, худо-бедно справлялся со своими функциями. Тогда я только начинал познавать электронику, и все ограничивалось кручением моторчиков. Мне бы в то время интернет и хоть какие то карманные деньги…Первый блок питания
  Он выдержал много издевательств, и жив до сих пор, но мне хотелось большего. Были мысли купить готовый у китайцев, но пока душила жаба случился кризис, а тут подвернулась эта схемка. Начал собирать компоненты. Многое нашлось в закромах (резисторы и транзисторы, импульсник от ноутбука, ненужная зарядка от телефона), но без закупки не обошлось.
Список закупленных деталей:
Чип-Дип силовой транзистор 2SD1047 — 110 р.конденсатор электролитический 330 мф — 2х8 р.корпус будущего блока питания — 540 р. итого 825 р. Чип-нн (со ссылками не получается из-за специфики сайта) операционный усилитель LM358N — 12 р. конденсатор электролитический 2200 мкф. — 13 р. винтовые терминалы 2х — 22 р. держатель светодиода х3 — 20 р. кнопка с фиксацией красная, здоровенная — 17 р. шунт 0.1 ом — 30 р. многоборотные подстроечные резисторы 470 ом х2 — 26 р. итого 140 р. Для любопытствующих схема.
Принцип работы сего устройства.
Ардуино следит за напряжением на выходе, за током, и посредством ШИМ пинает силовой транзистор так, чтобы блок питания выдавал установленные значения. Блок питания умеет выдавать напряжение от 1 до 16 вольт, обеспечивать ток 0.1 — 8 ампер (при нормальном источнике напряжения) уходить в защиту и ограничивать ток. То есть его можно использовать для зарядки аккумуляторов, но я не рискнул, да и зарядник у меня уже есть. Еще одна особенность этого странного блока питания в том, что он питается от двух напряжений. Основное напряжение должно подкрепляться вольтодобавкой от батарейки, или второго блока питания. Это нужно для корректной работы операционного усилителя. Я использовал ноутбучный блок питания 19в 4А в качестве основного, и зарядку 5в 350мА от какого-то телефона в качестве добавочного питания.
Сборка.
Сборку я решил начать с пайки основной платы с расчетом забить болт, если не заработает, так как начитался комментов от криворуких, как все у них дымит, взрывается и не работает, да и к тому же я внес некоторые изменения в схему. Для изготовления платы я купил новый лазерный принтер, чтобы наконец то освоить ЛУТ, ранее рисовал платы маркером (вот пример), тот еще геморрой. Плата получилась со второго раза, потому что в первый раз я зачем-то отзеркалил плату, чего делать было не нужно.Окончательный результат:
Пробный запуск обнадежил, все работало как надо После удачного запуска я принялся курочить корпус. Начал с самого габаритного — системы охлаждения силового транзистора. За основу взял кулер от ноутбука, вколхозил это дело в заднюю часть.
  Натыкал на переднюю панель кнопок управления и лампочек. Здоровенная крутилка это энкодер со встроенной кнопкой. Используется для управления и настройки. Зеленая кнопка переключает режимы индикации на дисплее, прорезь снизу для разъема юсб, три лампочки (слева направо) сигнализируют о наличии напряжения на клеммах, активации защиты при перегрузе, и об ограничении тока. Разъем между клеммами для подключения дополнительных устройств. Я втыкаю туда сверлилку для плат и резалку для оргстекла с нихромовой струной.  Засунул все кишки в корпус, подсоединил провода  После контрольного включения и калибровки закрыл крышкой.Фото собранного  Отверстия проделаны под радиатором стабилизатора lm7805, который нехило греется. Подсос воздуха через них решил проблему охлаждения этой детали  Сзади выхлопная труба, красная кнопка включения и разъем под сетевой кабель.  Прибор обладает кое-какой точностью, китайский мультиметр с ним согласен. Конечно калибровать самопальную махарайку по китайскому мультиметру и говорить о точности достаточно смешно. Несмотря на это прибору найдется место на моем столе, так как для моих целей его вполне достаточноНекоторые тестыВзаимодействие с программой. На ней в реальном времени отображается напряжение и ток в виде графиков, так же с помощью этой программы можно управлять блоком питания.  К блоку питания подключена 12-вольтовая лампа накаливания и амперметр. Внутренний амперметр после подстройки работает сносно  Измерим напряжение на клеммах. Великолепно.  В прошивке реализована ваттосчиталка. К блоку подключена все та же лампочка на 12 вольт, на цоколе которой написано «21W». Не самый паршивый результат.  Изделием доволен на все сто, поэтому и пишу обзор. Может кому-то из читателей нехватает такого блока питания.  О магазинах:  Чип-нн порадовал скоростью доставки, но ассортимент маловат на мой взгляд. Этакий интернет магазин, аналогичный арадиомагазину в среднем городке. Цены ниже, кое на что в разы.  Чип-дип… закупил там то, чего не было в чип-нн, иначе б не сунулся. розница дороговата, но все есть.  Мои исходники:Переделанная схема в протеусе+печатная платаЖивотноеживотных под руку не подвернулось, есть искусственный слон с испорченной платой для этого блока питания
В статье подробно разбирается как на основе микроконтроллера Ардуино можно создать контролируемый блок питания своими руками.
Назначение блока питания на Ардуино
Часто начинающие электронщики задаются вопросом: можно ли сделать блок питания на Ардуино. Это возможно. Блок питания сломанного компьютера отлично подойдет для создания зарядного устройства для микроконтроллера Ардуино и других приборов, которым требуется электрическое питание. При создании блока питания важно учитывать особенности выбранной модели.
Сегодня мы подробнее разберем как можно с помощью платы Ардуино создать контролируемый блок питания своими руками. После конструирования получится настоящий регулировщик питания, который способен работать в следующих режимах: время отдыха, режим экономии для слабой электроники и работа в десяток ампер на 5 Вольт или 12 Вольт, если это необходимо.
Все виды блоков питания созданы с одной целью – преобразовать полученную из сети переменного тока электрическую энергию для полноценной работы компьютерного устройства. Блок питания для Ардуино будет превращать сетевое переменное напряжение, поступающее в размере 220 Вольт и 50 Гц, в напряжение постоянного характера 5 или 12 Вольт или же в 3,3 Вольт, поддерживается в некоторых системах.
Если требуется блок питания для цифровой схемы, а к этой категории относится системная плата, платформа различных адаптеров и накопители с информацией в виде дисков, нужно настроить рабочее напряжение на 3,3 Вольта.
При конструировании источника питания для двигателей, дисководов и вентиляторов, рабочее напряжение повышается на 9 Вольт. Компьютер не сломается и не выйдет из строя, если напряжение в сети соответствует положенной норме.
Типичный паспорт блоков содержит информацию о том, что источник перерабатывается – требуется положительное напряжение и отрицательное. Для нормальной работы электронных схем и различного вида двигателей необходимо 5+ или 12+ Вольт. Здесь возникает вопрос: зачем нужно отрицательное напряжение? Отрицательное напряжение использовалось в старых компьютерах. Современные устройства работают только с положительным зарядом.
Виды блоков питания
Источники питания подразделяют на виды по типу их работоспособности:
- Трансформаторный, по-другому линейный.
 - Импульсный, по-другому инверторный.
 
Первый вид сделан из трансформатора понижения и выпрямителя. Такая конструкция преобразует переменный ток в постоянный. После этого установлен фильтр в виде конденсатора. Он сглаживает пульсации, тем самым стабилизируя выходные параметры и защищая устройство от коротких замыканий.
Плюсы трансформаторного блока:
- надежность;
 - легко ремонтировать;
 - конструкция быстро разбирается;
 - практически отсутствуют помехи при работе;
 - низкая стоимость.
 
Минусов всего 2 – большая масса и маленький КПД.
Еще одна простейшая схема:
Второй вид построен по принципу инверторной системы, где переменное напряжение перерабатывается в постоянное. После этой операции создаются высокочастотные импульсы, которые также проходят трансформацию. Если устройство поддерживает гальваническую развязку, то созданные импульсы будут передаваться трансформатору. В противном случае импульсы переходят прямо к НЧ фильтру, который встроен на выходе электронного прибора.
Для формирования высокочастотных сигналов в импульсный блок питания Ардуино внедрили небольшой по размеру трансформатор. Такая конструкция заметно меньше по габаритам и массе в отличие от трансформаторного источника питания. Чтобы стабилизировать напряжение в сети, необходимо использовать обратную связь с отрицательным показателем. Поэтому на выходе в сети ничего не замкнет, так как здесь держится постоянный и оптимальный уровень напряжения, который не зависит от величины нагрузки.
Схема импульсного блока питания может быть такой:
Плюсы второго вида источников питания:
- небольшая масса;
 - маленькие габариты;
 - высокий КПД;
 - средняя стоимость.
 
Кроме того, такой блок имеет дополнительную защиту, которая обеспечивает безопасность при эксплуатации электронного устройства. БП импульсного характера оснащены защитой от внезапных коротких замыканий или поломке компьютерных девайсов.
К минусам можно отнести отсутствие гальванической развязки, при которой ремонтные работы проходят быстро и легко. Помимо этого значительного минуса есть еще 2 – нагрузка на нижний предел ограничена, прибор часто провоцирует помехи высокой частоты. Когда аппарат не набирает требуемую мощность, компьютерное устройство не заработает.
Инвертором именуют девайс, который популярен среди владельцев автомобилей. Он преобразует напряжение 12 или 24 Вольта в переменное на 220 Вольт. Электрический ток в блок подается напрямую от аккумулятора машины. Прибор особенно пригодится в том случае, когда требуется подключить электроприемник, форма сигнала которого не идеальна по синусоидальному стандарту. Перед подключением в сеть необходимо проверить требуемое для работы напряжение во избежание поломки или замыкания.
Плюсы вышеуказанного прибора:
- компактность;
 - небольшая масса;
 - предусмотрен защитный механизм против скачков напряжения;
 - устройство легко эксплуатировать.
 
К недостаткам можно отнести большую цену и минимальную надежность платформы управления микропроцессором.
Компоненты устройства
Инструменты, которые необходимы для создания лабораторного блока питания на Ардуино:
- Паяльный аппарат.
 - Ножницы.
 - Спички или зажигалка для подогрева термоусадочной трубки.
 
Список деталей:
- Термоусадочная трубка.
 - Резистор 1К, номинал подойдет любой.
 - Провода с БЛС штырями – 3 штуки.
 - Удлинитель АТХ кабеля для подключения к материнской плате.
 
Основные компоненты;
- Источник питания АТХ.
 - Транзисторы, которые поддерживают высокую мощность для коммутации.
 - Микропроцессор Ардуино примерно на 5 Вольт.
 
Особенности и характеристика
Чтобы лабораторный блок питания на Аrduino бесперебойно работал, нужно, при подключении схем, быть внимательным и осторожным. Для начала берется красный АТХ провод и подключается к 5+ Вольт. А провод черного цвета подключается к GND.
Затем зеленый провод присоединяется к управляющему выходу. Можно использовать контакт А0. Однако общие выводы цифровых входов и выходов работают по одной схеме. Завершаем операцию подключением АТХ. Теперь микропроцессор Ардуино получает резервный ток, при этом вентилятор выключен.
Для того чтобы электронное устройство работало на всех мощностях, необходимо задать команду:
const int ctrlPina=15; // Если номер пина равняется D15, при необходимости, можно к другому контакту digitalsWrite(ctrlPina, LOW);
Чтобы выключить вышеуказанную функцию, задаем в программе
digitalsWrite(ctrlPina, HIGH);
Похожая строчка:
pinMode(ctrlPinа, INPUT);
В конце операции необходимо подключить высокоточную нагрузку. Это можно сделать с любым из разъемов по виду МОЛЕКС блоков АТХ. Управление производится с помощью транзисторов. Если пользователю нужно более высокое напряжение, ток регулируется командами, описанными выше.
Важно! Вы должны быть осторожны, подключая Arduino прямо к + 5В. Если вы также подключите USB-кабель, вы можете получить ток, текущий на USB-порт вашего ПК, поэтому следите за тем, чтобы одновременно подключать только один источник питания.
Спецификация ATX предполагает, что вы можете как удерживать + 5 В так и отключить/разъединить (установить высокое сопротивление), чтобы отключить основное питание.
Скачать спецификацию .pdf
Вариант того, что можно получить смотрите на видео ниже:
Самостоятельно сконструированный блок в домашних условиях обойдется гораздо дешевле магазинного аппарата. Цена электронного устройства в магазинах – от 700 рублей.
Сегодня 5 Вольт вполне достаточно для подключения любых микроконтроллеров, работающих под этим напряжением.
Не так давно приобрёл паяльную станцию. Давно занимаюсь любительской электроникой, и вот настал момент когда точно осознал что пора. До этого пользовался батиным самопальным блоком, совмещавшим лабораторный блок питания и блок питания низковольтного паяльника. И вот встала передо мной проблема: паяльную станцию я ставлю, а старый блок держать ради хилого и не точного блока питания 0-30в 3А или таки купить нечто современное, с защитой по току и цифровыми индикаторами? Поползав по ебею понял что максимум что мне светит это за 7-10 тыс купить Китайский блок с током максимум в 5А. Жаба сказала своё веское «ква», руки зачесались и…  Теперь к сути. Сформировал требования к блоку: минимум 0-30В, при токах минимум 10А, с регулируемой защитой по току, и с точностью регулировки по напряжению 0.1В. И что б стало ещё интереснее — 2 канала, пусть и от общей земли. Установка напряжения должна быть цифровой, т.е. никаких переменных резисторов, только энкодеры. Фиксированные установки напряжения и запоминание — опционально.  Для индикации состояния выхода были выбраны цифровые китайские комбинированные индикаторы на ЖК, с диапазоном до 199В с точностью 0.1В и до 20А с точностью 0.01А. Что меня полностью устроило. А вот что забыл, так это прикупить к ним шунты, т.к. по наивности думал что они будут в комплекте.  Для первичного преобразования напряжения думал использовать обычный трансформатор с отводами через каждые 6В, коммутируемый релюшками с контроллера, а для регулировки выхода простой эмиттерный повторитель. И всё бы ничего, но когда узнал стоимость и габариты такого трансформатора (30В * 10А = 300вт), то понял что надо быть современнее и использовать импульсные блоки питания.  Пробежавшись по предложениям понял что ничего толкового на мои токи нет, а если и есть, то жаба категорически против. В связи с этим пришла мысль попробовать использовать компьютерные блоки питания, коих всегда у любого ITшника предостаточно. Были откопаны блоки по 350Вт, что обещало 22А по +5В ветке и 16А по 12В. Пробежавшись по интернету нашёл много противоречивых мнений по поводу последовательного соединения блоков, и нашёл умную статью на Радиокоте как это сделать правильно. Но перед этим решил рискнуть и таки взять и нахрапом соединить блоки последовательно, дав нагрузку.  … И получилось!   На фото последовательно соединены 3 блока. Де-факто на выходе 35В, 10.6А.






- https://mysku.ru/blog/russia-stores/34623.html
 - https://arduinoplus.ru/blok-pitania-arduino/
 - https://habr.com/post/213497/
 










Робот на Ардуино и машинка на Bluetooth своими руками
Выпуск 2. Основы Arduino для начинающих. Знакомство с Arduino, выбор платы и компонентов для дальнейшей работы
Блоки питания 6 вольт 1 ампер
							
12 Вольт 5 Ампер блок питания или как это могло быть сделано.
НОВИНКА 2016 года! ЭЛЕКТРОНИКА ДЛЯ НАЧИНАЮЩИХ. БАЗОВЫЙ НАБОР ЭЛЕКТРОННЫХ КОМПОНЕНТОВ+КНИГА (11 ЭКСПЕРИМЕНТОВ).
Блок питания (12 Вольт) своими руками. Схема блока питания на 12 Вольт
Видео и фото обзор стартового набора Arduino для UNO R3 из посылки на Aliexpress