KhabibraТемы / СоветыДобавлено 5 комментариев ТеорияДостижение выхода синусоидальной волны довольно сложно и не может быть рекомендовано для инверторов, потому что электронные устройства обычно не «любят» экспоненциально возрастающие токи или напряжения. Поскольку инверторы в основном изготавливаются с использованием твердотельных электронных устройств, синусоидальная форма волны обычно исключается.Электронные силовые устройства при работе с синусоидальными волнами дают неэффективные результаты, так как устройства, как правило, греются по сравнению при работе с прямоугольными импульсами.Таким образом, лучший вариант для реализации синусоидальной волны на инверторе это — ШИМ, что означает широтно-импульсную модуляцию или PWM .PWM-это усовершенствованный способ (цифровой вариант) выставления экспоненциальной формы волны через пропорционально изменяющиеся квадратные ширины импульсов, чистое значение которых вычисляется точно в соответствии с чистым значением выбранной экспоненциальной формы волны, здесь «чистое» значение относится к СРЕДНЕКВАДРАТИЧЕСКОМУ значению. Поэтому вычисленная ШИМ со ссылкой на данную синусоидальную волну может использоваться в качестве идеального эквивалента для репликации данной синусоиды. Кроме того, PWMs будет идеально совместимым с электронными приборами силы (mosfets, BJTs, IGBTS) и позволяет использование их с минимальным тепловыделением.Что такое SPWMСамый обычный метод производить PWM sinewaver (синусоидную волну) или SPWM, путем подачи нескольких экспоненциально изменчивых сигналов к входу операционного усилителя для необходимой обработки. Среди двух входных сигналов один должен быть намного выше по частоте по сравнению с другим.Использование двух входных сигналовКак упоминалось в предыдущем разделе, процедура включает подачу двух экспоненциально изменяющихся сигналов на входы операционного усилителя.Здесь операционный усилитель сконфигурирован как типичный компаратор, поэтому мы можем предположить, что операционный усилитель мгновенно начнет сравнивать мгновенные уровни напряжения этих двух наложенных сигналов в тот момент, когда они появляются или применяются к его входам.Для того чтобы операционный усилитель мог правильно реализовать необходимые синусоидальные ШИМ на своем выходе, необходимо, чтобы один из сигналов имел гораздо более высокую частоту, чем другой. Более медленная частота здесь-та, которая должна быть синусоидальной волной образца, которая должна имитироваться (реплицироваться) PWMs.В идеале, оба сигнала должны быть синусоидальными (один с более высокой частотой, чем другой), однако то же самое может быть реализовано путем включения треугольной волны (высокая частота) и синусоидальной волны (выборочная волна с низкой частотой). Как видно на следующих изображениях, высокочастотный сигнал неизменно подается на инвертирующий вход ( — ) операционного усилителя, в то время как другой более медленный синусоидальный сигнал подается на не инвертирующий ( + ) вход операционного усилителя. В худшем случае оба сигнала могут быть треугольными волнами с рекомендуемыми уровнями частоты, как описано выше. Тем не менее, это поможет в достижении достаточно хорошего эквивалента PWM sinewave.Сигнал с более высокой частотой называется несущим сигналом, в то время как более медленный сигнал выборки называется модулирующим входом.Создание SPWM с треугольной и сухожильной волнойОбращаясь к приведенному выше рисунку, возможно ясно визуализировать через нанесенные точки различные совпадающие или перекрывающиеся точки напряжения двух сигналов в течение заданного промежутка времени. Горизонтальная ось показывает период времени формы волны, пока вертикальная ось показывает уровни напряжения тока 2 одновременно бежит, наложенной формы волны. Рисунок информирует нас о том, как операционный усилитель будет реагировать на показанные совпадающие мгновенные уровни напряжения двух сигналов и производить соответственно меняющуюся синусоидальную ШИМ на своем выходе. Операционный усилитель (ОУ) просто сравнивает, уровни напряжения тока волны быстрого треугольника меняя мгновенно синусоидальную волну (это может также быть волна треугольника), и проверяет случаи, во время которых напряжение тока формы волны треугольника может быть ниже, чем напряжение тока волны синуса и отвечает немедленно создавать высокую логику на своих выходах.Это сохраняется до тех пор, пока потенциал волны треугольника продолжает быть ниже потенциала волны синуса, и момент, когда потенциал волны синуса обнаружен, чтобы быть ниже, чем мгновенный потенциал волны треугольника, выходы возвращаются с минимумом и выдерживают, пока ситуация не повторяется.Это непрерывное сравнение мгновенных уровней потенциала двух наложенных друг на друга волновых форм на двух входах операционных усилителей приводит к созданию соответственно изменяющихся ШИМ, которые могут точно повторять синусоидальную форму, приложенную к не инвертирующему входу операционного усилителя.Операционный усилитель и SPWMНа следующем рисунке показано моделирование вышеуказанной операции:Здесь мы можем наблюдать, как реализуется практически, и именно так операционный усилитель будет выполнять то же самое (хотя и с гораздо большей скоростью, в МС).Операция вполне очевидна и отчетливо показывает, как операционный усилитель должен обрабатывать синусоидальную волну ШИМ путем сравнения двух одновременно меняющихся сигналов на его входах, как описано в предыдущих разделах.На самом деле операционный усилитель будет обрабатывать синусоидальные ШИМ гораздо более точно, чем показанное выше моделирование, может быть в 100 раз лучше, создавая чрезвычайно однородные и хорошо измеренные ШИМ, соответствующие подаваемому образцу. Синусоида.Инвертор на ардуино две схемысписок деталейВсе резисторы 1/4 ватт, 5% CFR•10K = 4•1K = 2•BC547 = 4шт•МОП-транзисторы IRF540 = 2шт•Arduino UNO = 1•Трансформатор = 9-0-9V/220V/120V .•Батарея = 12VКонструкция на самом деле очень проста, как показано на следующем рисунке.
Pin#8 и pin#9 создают ШИМ альтернативно и переключают Мосфеты с такой же ШИМ.Мосфет в свою очередь наводит на трансформатор сильно токовую форму волны SPWM, используя силу батареи, заставляя вторичку трансформатора произвести идентичную форму волны.Предлагаемая схема инвертора Arduino может быть обновлена до любого предпочтительного более высокого уровня мощности, просто заменив Мосфеты и трансформатор соответственно, в качестве альтернативы вы также можете преобразовать это в полный мост или Н-мостовой синусоидальный инверторПитание платы ArduinoИзображения формы волны для Arduino SPWMПоскольку плата Arduino будет производить выход 5V, это может быть не идеальное значение для непосредственного управления МОП-транзисторами.Поэтому необходимо поднимать уровень строба к 12V так, что Мосфеты будут работать правильно без нагрева приборов. Чтобы убедиться, что Мосфеты не запускается во время загрузки или запуска Arduino, необходимо добавить следующий генератор задержки и подключить к базе транзисторов BC547.Это защитит Мосфеты и предотвратит их сгорание во время переключения питания и при загрузке Arduino.Добавление автоматического регулятора напряженияТак же, как и на любом другом инверторе, на выходе этой конструкции ток может подняться до небезопасных пределов, когда батарея полностью заряжена.Чтобы контролировать это добавим автоматический регулятор напряжения тока. Коллекторы BC547 должны быть подключены к основаниям левой пары BC547, которые подключены к Arduino через резисторы 10K.Второй вариант инвертора с использованием микросхемы sn7404/к155лн1Важно:Чтобы избежать случайного включения перед загрузкой Arduino, простая задержка в цепи таймера может быть включена в вышеуказанную конструкцию, как показано ниже:Код программы:
/* This code was based on Swagatam SPWM code with changes made to remove errors. Use this code as you would use any other Swagatam’s works. Atton Risk 2017 */ const int sPWMArray[] = {500,500,750,500,1250,500,2000,500,1250,500,750,500,500}; // This is the array with the SPWM values change them at will const int sPWMArrayValues = 13; // You need this since C doesn’t give you the length of an Array // The pins const int sPWMpin1 = 10; const int sPWMpin2 = 9; // The pin switches bool sPWMpin1Status = true; bool sPWMpin2Status = true; void setup() { pinMode(sPWMpin1, OUTPUT); pinMode(sPWMpin2, OUTPUT); } void loop() { // Loop for pin 1 for(int i(0); i != sPWMArrayValues; i++) { if(sPWMpin1Status) { digitalWrite(sPWMpin1, HIGH); delayMicroseconds(sPWMArray[i]); sPWMpin1Status = false; } else { digitalWrite(sPWMpin1, LOW); delayMicroseconds(sPWMArray[i]); sPWMpin1Status = true; } } // Loop for pin 2 for(int i(0); i != sPWMArrayValues; i++) { if(sPWMpin2Status) { digitalWrite(sPWMpin2, HIGH); delayMicroseconds(sPWMArray[i]); sPWMpin2Status = false; } else { digitalWrite(sPWMpin2, LOW); delayMicroseconds(sPWMArray[i]); sPWMpin2Status = true; } } }
Удачи.Автор: инженер-электронщик (dipIETE ), любитель, изобретатель, дизайнер схем/печатных плат, производитель.
- Цена: $170
Для тех, у кого нет света, и прочих неравнодушных, предлагаю обзор очередного своего инвертора 12-220 с чистым синусом. Мало фоток, много текста. Не прошло и года, как мой ранее купленный и обозренный тут инвертор приказал долго жить. Как показало расследование, у него на выходе значительно выросла напруга, из-за чего в конце концов произошла цепная реакция и выгорела практически вся силовая часть. При попытке отремонтировать сценарий повторился, в связи с чем я бросил это унылое занятие и заказал новый.Технические детали Новый девайс приехал наземной почтой в «картофельном мешке», отправлен почтой Хэйхэ (это такой китайский город рядом с Благовещенском). Мешок — это инновация почты России, я так понимаю. Внутри мешка была китайская почтовая коробка с девайсом. Ехал недели три, емнип. Фотографий «сверху» достаточно на странице с описанием девайса. Но я их тут тоже вставлю, т.к. страница может оказаться недоступной через некоторое время.Фото со всех сторон Сам девайс довольно внушительных размеров. Номинальная мощность 1500 Ватт, что похоже на правду — подключал утюг 1400 Ватт — работает, ток от аккумуляторов при этом 120 Ампер. Внутри, кстати, 4 предохранителя по 40 ампер, что соответствует примерно 1600-1800W при напряжении аккумов 10-11 Вольт под нагрузкой.Кишки
В кишочках у нас наблюдается выходной транзисторный мост на мощных igbt-транзисторах, входной на полевиках. Между ними на термоклее сидит термодатчик. Еще одно термореле KSD-01F в корпусе TO-220 снизу прикручено, включает вентилятор при достижении температуры корпуса более 45 градусов. Ниже этой температуры инвертор практически бесшумен. Это, кстати, положительное отличие от старого инвертора. В старом вентилятор крутился в независимости от температуры и в зависимости от нагрузки, и начинал противно жужжать при нагрузке уже более 20-30 Ватт, передавая свои вибрации на стену, к которой был прикручен инвертор. В новом инверторе вентилятор включается вообще довольно редко, только когда проработает длительное время на хорошую нагрузку, и при условии, что на улице достаточно жарко. Рекомендую проверить все крепления и при необходимости подтянуть. Я в своем нашел пару незатянутых транзисторов. Кроме того, пропаял все сопли, которые видны на обратной стороне платы. И самое интересное — как здесь формируется синус. За это отвечает готовая плата на микросхеме EG8010, которая продается на ebay: www.ebay.com/sch/i.html?_trksid=p2050601.m570.l1313.TR3.TRC2.A0.H0.Xeg8010+driver&_nkw=eg8010+driver&_sacat=0&_from=R40 Плата просто впаяна своей гребенкой в основную плату. Смотрел осциллографом, что она выдает. Суть в следующем: в то время, как один из полевиков транзисторного моста притягивается к питанию, второй шимуется, формируя одну полуволну синуса. Затем процесс повторяется на другой паре транзисторов моста, формируя вторую полуволну. Не надо писать программу для микроконтроллера, минимум заморочек, теперь чистый синус сделает даже школьник. С помощью такой платы можно незамысловато переделать тупой инвертер с меандром в чистый синус. И все удовольствие за 10 баксов! Синус на выходе ничем не отличается от такового в старом инверторе, можете посмотреть в старом обзоре осциллограммы. Замер тока холостого хода выявил интересную особенность: при напряжении на аккумуляторах более 13.5 Вольт — ток ХХ около 0.6-0.7А, при напряжении менее 13.5 — ток ХХ 1.2А. Не знаю, почему так. Возможно, что-то нечисто со схемотехникой. Из практических наблюдений: старый пылесос 600 Вт стартует без проблем (стартовый ток у двигателя раз в 6 превышает рабочий). Утюг 1400 Вт работает без проблем. Более мощного ничего не подключал и желания нет. Итак. Плюсы: мощный, относительно дешевый для своей мощности. Минусы: необходимо разбирать, все пропаивать-протягивать. Непонятки с током ХХ. По просьбам трудящихся, далее планируется обзор контроллеров заряда для солнечных панелей, и всей системы в целом. Для тех, кто хочет понять, как это — жить без света 🙂 Используемые источники:- https://usamodelkina.ru/14849-dve-shemy-invertora-12-220-volt-na-arduino.html
- https://mysku.ru/blog/aliexpress/26084.html