KhabibraТемы / СоветыДобавлено 5 комментариев ТеорияДостижение выхода синусоидальной волны довольно сложно и не может быть рекомендовано для инверторов, потому что электронные устройства обычно не «любят» экспоненциально возрастающие токи или напряжения. Поскольку инверторы в основном изготавливаются с использованием твердотельных электронных устройств, синусоидальная форма волны обычно исключается.Электронные силовые устройства при работе с синусоидальными волнами дают неэффективные результаты, так как устройства, как правило, греются по сравнению при работе с прямоугольными импульсами.Таким образом, лучший вариант для реализации синусоидальной волны на инверторе это — ШИМ, что означает широтно-импульсную модуляцию или PWM .PWM-это усовершенствованный способ (цифровой вариант) выставления экспоненциальной формы волны через пропорционально изменяющиеся квадратные ширины импульсов, чистое значение которых вычисляется точно в соответствии с чистым значением выбранной экспоненциальной формы волны, здесь «чистое» значение относится к СРЕДНЕКВАДРАТИЧЕСКОМУ значению. Поэтому вычисленная ШИМ со ссылкой на данную синусоидальную волну может использоваться в качестве идеального эквивалента для репликации данной синусоиды. Кроме того, PWMs будет идеально совместимым с электронными приборами силы (mosfets, BJTs, IGBTS) и позволяет использование их с минимальным тепловыделением.Что такое SPWMСамый обычный метод производить PWM sinewaver (синусоидную волну) или SPWM, путем подачи нескольких экспоненциально изменчивых сигналов к входу операционного усилителя для необходимой обработки. Среди двух входных сигналов один должен быть намного выше по частоте по сравнению с другим.Использование двух входных сигналовКак упоминалось в предыдущем разделе, процедура включает подачу двух экспоненциально изменяющихся сигналов на входы операционного усилителя.Здесь операционный усилитель сконфигурирован как типичный компаратор, поэтому мы можем предположить, что операционный усилитель мгновенно начнет сравнивать мгновенные уровни напряжения этих двух наложенных сигналов в тот момент, когда они появляются или применяются к его входам.Для того чтобы операционный усилитель мог правильно реализовать необходимые синусоидальные ШИМ на своем выходе, необходимо, чтобы один из сигналов имел гораздо более высокую частоту, чем другой. Более медленная частота здесь-та, которая должна быть синусоидальной волной образца, которая должна имитироваться (реплицироваться) PWMs.В идеале, оба сигнала должны быть синусоидальными (один с более высокой частотой, чем другой), однако то же самое может быть реализовано путем включения треугольной волны (высокая частота) и синусоидальной волны (выборочная волна с низкой частотой). Как видно на следующих изображениях, высокочастотный сигнал неизменно подается на инвертирующий вход ( — ) операционного усилителя, в то время как другой более медленный синусоидальный сигнал подается на не инвертирующий ( + ) вход операционного усилителя. В худшем случае оба сигнала могут быть треугольными волнами с рекомендуемыми уровнями частоты, как описано выше. Тем не менее, это поможет в достижении достаточно хорошего эквивалента PWM sinewave.Сигнал с более высокой частотой называется несущим сигналом, в то время как более медленный сигнал выборки называется модулирующим входом.

/* This code was based on Swagatam SPWM code with changes made to remove errors. Use this code as you would use any other Swagatam’s works. Atton Risk 2017 */ const int sPWMArray[] = {500,500,750,500,1250,500,2000,500,1250,500,750,500,500}; // This is the array with the SPWM values change them at will const int sPWMArrayValues = 13; // You need this since C doesn’t give you the length of an Array // The pins const int sPWMpin1 = 10; const int sPWMpin2 = 9; // The pin switches bool sPWMpin1Status = true; bool sPWMpin2Status = true; void setup() { pinMode(sPWMpin1, OUTPUT); pinMode(sPWMpin2, OUTPUT); } void loop() { // Loop for pin 1 for(int i(0); i != sPWMArrayValues; i++) { if(sPWMpin1Status) { digitalWrite(sPWMpin1, HIGH); delayMicroseconds(sPWMArray[i]); sPWMpin1Status = false; } else { digitalWrite(sPWMpin1, LOW); delayMicroseconds(sPWMArray[i]); sPWMpin1Status = true; } } // Loop for pin 2 for(int i(0); i != sPWMArrayValues; i++) { if(sPWMpin2Status) { digitalWrite(sPWMpin2, HIGH); delayMicroseconds(sPWMArray[i]); sPWMpin2Status = false; } else { digitalWrite(sPWMpin2, LOW); delayMicroseconds(sPWMArray[i]); sPWMpin2Status = true; } } }
Удачи.Автор: инженер-электронщик (dipIETE ), любитель, изобретатель, дизайнер схем/печатных плат, производитель.
- Цена: $170
Для тех, у кого нет света, и прочих неравнодушных, предлагаю обзор очередного своего инвертора 12-220 с чистым синусом. Мало фоток, много текста. Не прошло и года, как мой ранее купленный и обозренный тут инвертор приказал долго жить. Как показало расследование, у него на выходе значительно выросла напруга, из-за чего в конце концов произошла цепная реакция и выгорела практически вся силовая часть. При попытке отремонтировать сценарий повторился, в связи с чем я бросил это унылое занятие и заказал новый.Технические детали Новый девайс приехал наземной почтой в «картофельном мешке», отправлен почтой Хэйхэ (это такой китайский город рядом с Благовещенском). Мешок — это инновация почты России, я так понимаю. Внутри мешка была китайская почтовая коробка с девайсом. Ехал недели три, емнип. Фотографий «сверху» достаточно на странице с описанием девайса. Но я их тут тоже вставлю, т.к. страница может оказаться недоступной через некоторое время.Фото со всех сторон Сам девайс довольно внушительных размеров. Номинальная мощность 1500 Ватт, что похоже на правду — подключал утюг 1400 Ватт — работает, ток от аккумуляторов при этом 120 Ампер. Внутри, кстати, 4 предохранителя по 40 ампер, что соответствует примерно 1600-1800W при напряжении аккумов 10-11 Вольт под нагрузкой.Кишки
В кишочках у нас наблюдается выходной транзисторный мост на мощных igbt-транзисторах, входной на полевиках. Между ними на термоклее сидит термодатчик. Еще одно термореле KSD-01F в корпусе TO-220 снизу прикручено, включает вентилятор при достижении температуры корпуса более 45 градусов. Ниже этой температуры инвертор практически бесшумен. Это, кстати, положительное отличие от старого инвертора. В старом вентилятор крутился в независимости от температуры и в зависимости от нагрузки, и начинал противно жужжать при нагрузке уже более 20-30 Ватт, передавая свои вибрации на стену, к которой был прикручен инвертор. В новом инверторе вентилятор включается вообще довольно редко, только когда проработает длительное время на хорошую нагрузку, и при условии, что на улице достаточно жарко. Рекомендую проверить все крепления и при необходимости подтянуть. Я в своем нашел пару незатянутых транзисторов. Кроме того, пропаял все сопли, которые видны на обратной стороне платы. И самое интересное — как здесь формируется синус. За это отвечает готовая плата на микросхеме EG8010, которая продается на ebay: www.ebay.com/sch/i.html?_trksid=p2050601.m570.l1313.TR3.TRC2.A0.H0.Xeg8010+driver&_nkw=eg8010+driver&_sacat=0&_from=R40 Плата просто впаяна своей гребенкой в основную плату. Смотрел осциллографом, что она выдает. Суть в следующем: в то время, как один из полевиков транзисторного моста притягивается к питанию, второй шимуется, формируя одну полуволну синуса. Затем процесс повторяется на другой паре транзисторов моста, формируя вторую полуволну. Не надо писать программу для микроконтроллера, минимум заморочек, теперь чистый синус сделает даже школьник. С помощью такой платы можно незамысловато переделать тупой инвертер с меандром в чистый синус. И все удовольствие за 10 баксов! Синус на выходе ничем не отличается от такового в старом инверторе, можете посмотреть в старом обзоре осциллограммы. Замер тока холостого хода выявил интересную особенность: при напряжении на аккумуляторах более 13.5 Вольт — ток ХХ около 0.6-0.7А, при напряжении менее 13.5 — ток ХХ 1.2А. Не знаю, почему так. Возможно, что-то нечисто со схемотехникой. Из практических наблюдений: старый пылесос 600 Вт стартует без проблем (стартовый ток у двигателя раз в 6 превышает рабочий). Утюг 1400 Вт работает без проблем. Более мощного ничего не подключал и желания нет. Итак. Плюсы: мощный, относительно дешевый для своей мощности. Минусы: необходимо разбирать, все пропаивать-протягивать. Непонятки с током ХХ. По просьбам трудящихся, далее планируется обзор контроллеров заряда для солнечных панелей, и всей системы в целом. Для тех, кто хочет понять, как это — жить без света 🙂 Используемые источники:- https://usamodelkina.ru/14849-dve-shemy-invertora-12-220-volt-na-arduino.html
- https://mysku.ru/blog/aliexpress/26084.html




Скачиваем и устанавливаем драйвер Ардуино Uno по шагам
MP2359DJ неплохой мелкий ШИМ контроллер
Что такое Ардуино? Это свобода для изобретателя
ОБОРУДОВАНИЕ
ТЕХНОЛОГИИ
РАЗРАБОТКИ