Андрей Смирнов
Время чтения: ~25 мин.
Просмотров: 334

Усилитель Джона Линсли Худа — JLH — немного о сборке В 

original1969-1-715x461.jpgВ 1969 году Джон Линсли Худ представил схему усилителя, работающего в классе А, которую за прошедшее время повторили огромное количество радиолюбителей. В чем секрет этого усилителя?

В первую очередь эта схема нас заинтересовала своей простотой. Её может собрать и настроить даже неопытный радиолюбитель. В статье мы узнаем, что влияет на характеристики усилителя, а затем соберем его и протестируем.

Вот оригинальная схема:

jlh1969-tshema.jpg

И рекомендуемые значения резисторов и выходного конденсатора:

Настройка осуществляется установкой половины напряжения питания в точке X и выбором тока покоя транзисторов согласно вашей нагрузки.

Китайский клон JLH1969

На данный момент на алиэкспресс существует клон этой схемы, которую можно заказать, как и в виде kit набора, так и уже собранную.

Мы заказали китайскую версию, поскольку не у всех есть возможность изготавливать платы самостоятельно. Сегодня мы посмотрим, как хорошо она звучит.

Собрать схему очень просто, так как плата сделана очень качественно. Выходные транзисторы 2N3055 непонятного происхождения, но мы пока оставим всё как есть и протестируем собранную плату.

Поскольку А класс имеет низкое КПД и требует хорошее охлаждение, мы будем использовать достаточно большие радиаторы.

А вот китайская схема. Резистором R1 мы настраиваем половину напряжения питания в контрольной точке A. Затем, резистором R2 выставляем ток покоя транзисторов. Красным крестиком на схеме указано место, в разрыв которого нужно подключать амперметр для измерения тока покоя.

Ток покоя необходимо выставлять после 15-минутной работы платы, когда она достаточно нагрелась.

На плате это выглядит так:

Напряжение питания — 24 вольт. Для начала мы выставили ток покоя 1.2A , затем половину напряжения питания между минусом и точкой А. (24/2=12) Затем замеряли температуру транзисторов во время работы.  Транзисторы не нагревались выше 60 -70 градусов, это их нормальный режим. Если температура будет выше 70 градусов, нужно увеличить площадь радиатора.

Дальше мы сделаем свой блок питания. Питание будет раздельное. У нас 4 обмотки на трансформаторе, две из них будут использоваться для питания наших плат усилителя.

На каждый канал используется свой выпрямитель, номиналы конденсаторов — 2×15000 мкФ. В дальнейшем, если потребуется, мы увеличим их ёмкость. Стабилизатор мы не будем использовать, поскольку усилитель и так будет выделять много тепла.

Давайте послушаем, как звучит наш собранный усилитель. Напряжение питания и ток покоя мы выбрали самые распространенные среди пользователей, в дальнейшем мы их откорректируем.

Звук получился очень приятный и чем-то похож на ламповый. В музыке немного не хватает низов, но с высокими и средними частотами все в порядке.

После часового прослушивания нам пришлось приклеить к диодным мостам радиаторы, поскольку первые очень сильно нагревались (до 80 градусов). Транзисторы нагрелись до 70.

Теперь посмотрим какие у нас получились характеристики усилителя.

Общие результаты

АЧХ у нас немного завалена на низких частотах. Это не критично, но дальше мы расскажем, как это исправить.

На графике гармонических искажений преобладает вторая гармоника, которая и создает так называемый «ламповый звук».

Подробный тест нашей платы JLH1969 смотрите здесь

Какой выбрать блок питания для JLH1969?

Мы решили проверить, как наш усилитель будет работать с разными типами блоков питания.

Будем использовать импульсный блок, обычный трансформаторный без стабилизации и еще запитаем его от аккумулятора. Начнем с обычного блока питания.

Питание трансформатор 24 В

Общая емкость конденсаторов: 30000 мФ.

По графику видно, что в идеале нужно добавить конденсаторы после диодного моста или же поставить стабилизатор, чтобы уменьшить шум. По звуку: если ухо прислонить к низкочастотному динамику вашей акустики, вы услышите небольшой фон в размере 100 Гц. При обычном прослушивании фон мешать не будет.

Импульсный блок питания 24 В

Практически идеальное питание. Если прислонить ухо к низкочастотному динамику вашей акустики, вы ничего не услышите.

Питание от аккумуляторной батареи

Это идеальное питание для аудиофилов. Вы совершенно ничего не услышите, если прислоните ухо к низкочастотному динамику акустики.

Выводы по питанию

Если посмотреть на графики, можно увидеть, что идеальный вариант для питания нашего усилителя — это аккумулятор. Но, поскольку его не очень удобно использовать, лучше выбрать импульсный блок питания. Их не очень любят те, кто с такими блоками сталкивался 20 лет назад.

В то время они работали практически на слышимых частотах, то есть, были слышны гармоники от работы такого блока питания. Следовательно, этот сигнал просачивался в звуковой тракт и создавал помехи. При прослушивании таких усилителей звук казался слишком резким.

На данный момент современные импульсные блоки работают на таких частотах, что ни сама частота, ни ее гармоники не попадают в слышимый диапазон нашего слуха, поэтому их можно использовать.

Влияние входного и выходного конденсаторов на АЧХ нашего усилителя

Замеряем АЧХ нашей платы. На входе: конденсатор 1 мкФ, на выходе: 2200 мкФ.

Если посмотреть график внизу, на АЧХ (частотную характеристику) нашего усилителя, то можно заметить завал на низких частотах, начиная от 100 Гц и ниже. А также небольшой завал на высоких частотах (от 10 кГц и выше). По высоким частотам этот завал совсем незначительный, поэтому мы его трогать не будем. А вот низких частот нужно немного добавить.

Часто начинающие пользователи методом научного тыка добавляют конденсаторы в усилитель. Иногда им везет, а иногда нет.

Для начала обратим внимание на рекомендации автора:

На нашей собранной плате выходной конденсатор имеет ёмкость 2200 мкФ, входной — 1 мкФ. Нагрузка у нас 4 Ом. На схеме Худа входной конденсатор — 0.5 мкФ, а выходной — 5000 мкФ. Частенько любители увеличивают входной конденсатор для выравнивания АЧХ. Но на самом деле нужно увеличить ёмкость выходного.

Сейчас мы добавим по очереди конденсаторы и будем замерять АЧХ.

1. Добавляем входной конденсатор 3.3 мкФ параллельно 1 мкФ = 4.3 мкФ:

На входе  4.3 мкФ на выходе 2200 мкФ

Видно, что практически ничего не поменялось на нашем графике, поэтому конденсатор мы пока выпаяем.

2. Теперь добавим параллельно выходному конденсатору 2200 мкФ ещё на 4700 мкФ и смотрим график:

На входе 1 мкФ на выходе 6900 мкФ

Как видим, наша АЧХ стала лучше на низких частотах и этого вполне достаточно для комфортного прослушивания музыки.

3. Но нам этого, конечно же, мало. Мы хотим ещё, поэтому добавим ещё 4700 мкФ к нашим конденсаторам:

На входе 1 мкФ на выходе 11600 мкФ

АЧХ ещё немного выровнялась, но это незначительно.

4. Давайте вернем наш конденсатор на вход, видно еще небольшое выравнивание АЧХ. Получилась такая картинка:

На входе 4.3 мкФ на выходе 11600 мкФ

Посмотрев на график, вы можете выбрать вариант, который вам подойдет для 4 Ом. Если же у вас акустика 8 Ом, просто делите емкость конденсаторов на 2.

Для себя мы оставим 2 вариант, этого достаточно для нашего усилителя. То есть, на входе — 1 мкФ а на выходе — 2200+4700 мкФ.

Выходные транзисторы

Мы решили купить оригинальные транзисторы MJ15003G вместо китайских 2N3055 для нашего усилителя. И в следующих тестах будем использовать их. Читайте о том, как отличить оригинальные транзисторы от поддельных на нашем форуме.

После покупки транзисторов MJ15003G мы их подобрали по одинаковым характеристикам. Постарайтесь сделать также. Но если нет такой возможности, то не страшно.

Сравнение новых транзисторов с транзисторами из набора

Левый канал с транзисторами 2N3055 с китайского набора:

Правый канал с транзисторами MJ15003G:

При одинаковых условиях мы видим разницу в характеристиках в пользу новых транзисторов. Транзисторы из набора вышли из строя, как только мы немного увеличили ток покоя до 2А. Причина простая — они не соответствуют характеристикам, то есть, они поддельные.

На что влияет ток покоя в усилителе JLH1969?

Очень часто начинающие радиолюбители считают так: чем больше ток покоя, тем лучше. На самом деле, у каждого транзистора есть оптимальный ток покоя и напряжение, при котором он лучше всего работает.

Ток покоя и мощность усилителя

Проведем эксперимент и замеряем ток покоя от минимального до максимального на нашей схеме. Смотрим, как влияет ток покоя на мощность нашего усилителя.

Результаты измерений при питании 19 Вольт. Ток покоя — мощность:

  • 2.1А — мощность 7.9 Ватт;
  • 1.1А — мощность 7.6 Ватт;
  • 0.6А — мощность 2.7 Ватт.

Как видно из результатов, оптимальный ток покоя, когда мощность усилителя остается практически неизменной, равняется от 1.1А до 2.1А. Ниже 1А мощность быстро падает.

Ток покоя и гармонические искажения JLH

Давайте будем менять ток покоя и смотреть, как будут меняться гармонические искажения. Питание платы усилителя — 19 Вольт.

1) Начинаем с 0.5А. На графике внизу мы видим лес гармонических искажений, следовательно, этого тока недостаточно для качественного воспроизведения звука.

Сейчас потребление нашего усилителя составляет 9 Ватт.

2) Далее, ток покоя 1А. На графике внизу мы видим, что гармонические искажения значительно уменьшились.

Потребление нашего усилителя увеличилось до 19 Ватт.

3) Увеличиваем ток покоя до 2.1А. Видно, что гармонические искажения минимальные.

Теперь потребление нашего усилителя увеличилось еще больше — 40 Ватт.

4) 2.3А. Видно, что гармонические искажения увеличились больше, чем при токе покоя в 1А.

Тут потребление усилителя 44 Ватт.

Какой выбрать оптимальный ток покоя? При питании 19 вольт идеальный вариант 2А, поскольку гармонические искажения минимальны. Но можно использовать и 1А, если вы не хотите использовать большие радиаторы. По звуку, при использовании 1- 1.3А, он будет похож на ламповый, благодаря большой второй гармонике. А при использовании 2А звук будет более чистым. Здесь вы сами должны решить, как вам нравится.

Следует отметить, что в усилителе JLH1969 ток покоя при включении на холодных транзисторах будет подниматься с их прогревом. Например, если вы выставите ток покоя 1А и подождете прогрева радиаторов, то после прогрева холостой ток поднимется до 1.3А. Это обязательно нужно учитывать при настройке усилителя. А если ваши радиаторы недостаточного размера, то усилитель будет нагреваться и ток покоя будет увеличиваться, пока плата не выйдет из строя.

Из предыдущих замеров зависимости мощности и искажений усилителя от тока покоя мы выяснили, что до 1А мощность слабая и гармонические искажения большие. Следовательно, если выставить ток покоя 1А на прогретых транзисторах, то на холодных мы получим примерно 0.7А. И на холодных первых десять минут ваш усилитель будет воспроизводить музыку с большими искажениями и уменьшенной мощностью. А затем, когда прогреется, то выйдет на нормальный режим работы.

Чтобы такого не случалось, мы рекомендуем выставлять минимальный ток покоя на прогретых транзисторах 1.3А. При таких настройках на холодных транзисторах усилитель будет работать с током покоя 1А и не будет вносить искажений в сигнал. Максимальный ток покоя используем 2А.

Что будет, если увеличить напряжение питания усилителя JLH1969?

Увеличим напряжение питания до 30 Вольт и ток покоя до 2.4А.

Стало заметно, что третьей гармоники практически нет и осталась только 2-ая гармоника. Но если обратить внимание на потребления нашего усилителя, то мы видим цифру в 73 Вт.  И это только один канал нашего усилителя. Если же их два, потребление составляет 146 Вт. На наш взгляд, такое потребление уже слишком большое и такие напряжения и токи нецелесообразны.

А если уменьшить ток покоя до 1.3А? Мы видим потребление 26 Вт и также небольшие гармонические искажения. Такое питание (27-30В) используется при нагрузке 8Ом.

Мы используем питание усилителя в 19 Вольт потому, что наша нагрузка равна 4Ом и в нашем усилителе не будет применяться стабилизатор питания. То есть, если в розетке 220 Вольт, то на выходе у нас 19 Вольт.

Как известно, в наших розетках питание колеблется, и в идеальном варианте этот диапазон равен 210- 230В. Поэтому, при понижении напряжения питание равно 18 Вольт, а при повышении будет 20 Вольт. Следовательно, мы выставили среднее значение, учитывая напряжение в розетке. При использовании импульсного блока питания или стабилизатора напряжения вы сможете выставить питание 18 Вольт для 4Ом и 27 Вольт для 8Ом.

Собираем усилитель JLH1969

Какие параметры мы выбрали для нагрузки 4 Ом:

  • Питание усилителя классическое с использованием трансформатора, без стабилизации, питание раздельное на каждую плату, 19 Вольт с отдельных обмоток трансформатора;
  • Ток покоя: 1.3А;
  • Входной конденсатор: 1 мФ;
  • Выходной конденсатор: 6900 мФ.

Почему не использовался импульсный блок питания? Мы решили проверить, каких параметров можно добиться при использовании классического питания. В дальнейшем мы соберем еще одну версию с импульсным блоком.

Трансформатор:

  • Тип трансформатора: тороидальный
  • Напряжение питания: 220В;
  • 2 Выхода по 15В (6А);
  • 2 Выхода по 9В (1А).

Чтобы знать, какое примерно напряжение будет на выходе после выпрямителя, умножьте его на 1.4(например 15*1.4=21).

В выпрямителе на каждый канал мы использовали по два конденсатора с напряжением 25В и ёмкостью 33000 мкФ. Для улучшения фильтрации мы также использовали CRC фильтр, поставив между конденсаторами резистор на 0.5 Ом.

Перед входом на плату выпрямителя рекомендуем поставить предохранители. Также можно зашунтировать конденсаторы ёмкостью 0.047 кмФ, поставив их параллельно выводам конденсаторов на 33000 мкФ.

Часто, при борьбе с фоном, начинающие радиолюбители забывают, что наводки можно уменьшить, изменив положение трансформатора.

Для уменьшения помех от трансформатора мы выставим такое положение, вращая его, при котором будет наименьшее количеством помех. А также накроем его металлической крышкой толщиной 1мм.

Селектор входов усилителя и отключение

В нашем усилителе мы будем использовать китайский селектор входов, но мы его немного переделаем.

Задача первая — это, собственно, переключать аудио вход. А вторая — использовать эту же плату для отключения звука после выключения усилителя.

Давайте вспомним, что мы поставили конденсаторы 66000 мкФ в питание каждого канала усилителя. Поэтому, при выключении нашего усилителя, он будет еще какое-то время работать, используя конденсаторы, пока они не разрядятся. При этом, первых 5 секунд после выключения будет играть музыка, а затем в колонках будет просто хрипеть еще несколько минут. Согласитесь, это не очень приятно.

Как обычно решают такие проблемы в усилителях? Ставят схему с реле, которая отключает акустику сразу после выключения усилителя. Обычно эта же схема является защитой акустики от постоянного тока при повреждении выходного каскада усилителя.

Давайте еще раз посмотрим на схему нашего усилителя:

На выходе мы видим конденсатор С5, через который подключается акустика. Через него не пройдет постоянный ток, поэтому защита нам не требуется. Теперь у нас есть вариант отключать акустику через реле и, таким образом, решить проблему. Но недостатком этого метода является звуковой сигнал, который будет проходить через контакты реле, что не очень хорошо. Чем меньше соединений у нас будет, тем лучше.

Поэтому мы решили пойти другим путем, а именно: при отключении усилителя перед входным конденсатором С1 будем замыкать его вход, как показано на схеме красным цветом. При замкнутом входе никаких звуков из акустики не будет.

У нас на плате 4 реле, которые включают один из 4 входов в усилитель (AUX, PHO, DVD, CD). По умолчанию все входы отключены, то есть контакты всех реле находятся в нормально разомкнутом состоянии. Мы же возьмем одно из реле (четвертое слева на право на картинке, CD) и перепаяем его так, чтобы контакты были в нормально замкнутом состоянии.

Получится, что при выключенном усилителе реле будет замыкать вход на плату. А как только мы его включим, реле разомкнется и звуковой сигнал будет поступать на плату. Получается, что, при выключении усилителя, 1-3 реле отключат все входы, а наше 4 реле перемкнет входы на плату.

Таким образом мы получили небольшую задержку при включении усилителя и теперь, при выключении, у нас не будет играть музыка.

Регулятор громкости Никитина

В нашем усилителе мы решили использовать регулятор громкости Никитина.

Вот его упрощенная схема

Плюсы такого регулятора — это постоянное входное сопротивление и точная регулировка громкости. А также такую плату можно расположить поближе к входным гнездам. А управление — в любое удобное место. Мы нашли доработанную современную реализацию с контролером, который управляет реле в зависимости от положения переменного резистора.

Такая плата питается от 5 Вольт(контролер) и 12 Вольт (реле). Подробно про эту схему можете посмотреть на сайте автора.

Смотрите наше видео на YouTube по сборке и тестированию усилителя

Тестируем собранный усилитель на мощность.

  • Мощность при нагрузке 4 Ом: 7 Ватт;
  • Мощность при нагрузке 8 Ом: 4 Ватт.

Для усилителя класса А это хороший результат, поскольку большинство мощности уходит на нагрев транзисторов. Вы можете спросить, хватит ли такой мощности для прослушивания музыки?

Мы замеряли усилитель на разной громкости и у нас получились такие результаты:

  • громкость, при которой я слушаю музыку: 0,25 Ватт;
  • громко слушаю музыку: 1 Ватт;
  • очень громко: 3 Ватт;
  • слушаю вместе с соседями: 7 Ватт.

Акустика Heco Victa Prime 702, чувствительность 91 Дб.

Характеристики усилителя JLH1969, полученные с помощью программы RMAA

1) Результат при нагрузке 8 Ом и мощности 3 Вт:

2) И результат при нагрузке 4 Ом и мощности 3,5 Вт:

  • Подробные характеристики RMAA  8 Ом — 3 Ватт  тест
  • Подробные характеристики RMAA 4 Ом — 3.5 Ватт тест

Слушаем музыку

Agnes Obel — Familiar

Нам звук очень понравился, усилитель отлично воспроизводит все частоты и свободно отыгрывает любой жанр музыки. В нашем варианте с повышенной второй гармоникой, в звуке присутствует легкий намек на «ламповый звук».

Результаты

Таким образом, как показали наши тесты, даже без доработок усилитель звучит хорошо. Но если вы хотите улучшить звучание, то мы показали вам, какие характеристики можно поменять. Выходные транзисторы в наборе — это лотерея, поэтому часто можно услышать противоположное мнение при прослушивании собранного набора.

С новыми транзисторами усилитель играет лучше и нет опасности, что они выйдут из строя во время работы. Поэтому рекомендуем сразу заменить выходные транзисторы на оригинальные 2N3055 или MJ15003G. 

Недостатки усилителя — это, в первую очередь, большое энергопотребление из-за работы в классе А и относительно небольшая мощность.

Достоинства этого усилителя — это легкая сборка и настройка, а также небольшая цена и отличный звук.

На нашем форуме есть довольно большая ветка, где многие пользователи повторили усилитель JLH1969 и делятся своим опытом. Если вы хотите повторить этот усилитель или у вас есть что рассказать или спросить на эту тему, то вам сюда.

Ссылки

59689 

hi-end-usilitel-jlh-klass-a-john-linsley-hood-usiliteli-1.jpg
Кит усилителя JLH на печатной плате один канал усилителя и стабилизатор питания
hi-end-usilitel-jlh-klass-a-john-linsley-hood-usiliteli-Hi-End.JPG
Усилитель класса А JLH собранный радиоинженером для себя
hi-end-usilitel-jlh-klass-a-john-linsley-hood-usiliteli-High-End.JPG
JLH усилитель со снятой крышкой, на каждой плате канал усилителя и стабилизатор питания
hi-end-usilitel-jlh-klass-a-john-linsley-hood-usiliteli-JLH-amp.JPG
Кажущаяся простота усилителя по схеме JLH, аппарат требует скурпулезной настройки
hi-end-usilitel-jlh-klass-a-john-linsley-hood-usiliteli-JLH-amplifier.JPG
Транзисторный усилитель по схеме Джона Ли Худа с регулятором громкости
hi-end-usilitel-jlh-klass-a-john-linsley-hood-usiliteli-JLH-amplifier-2.JPG
Усилитель JLH по схеме 1995 года с мощными выходными каскадами
hi-end-usilitel-jlh-klass-a-john-linsley-hood-usiliteli-JLH-amplifier-4.JPG
В усилителе JLH 1995 в каждом канале стоят четыре выходных транзистора
hi-end-usilitel-jlh-klass-a-john-linsley-hood-usiliteli-JLH-amplifier-3.JPG
Каждый канал усилителя JLH питается от своего блока питания с тороидальным трансформатором
hi-end-usilitel-jlh-klass-a-john-linsley-hood-usiliteli-JLH-amplifier-6.jpg
Усилитель класса А по мотивам JLH на современных транзисторах
hi-end-usilitel-jlh-klass-a-john-linsley-hood-usiliteli-JLH-amplifier-7.jpg
Для охлаждения выходных транзисторов применены радиаторы от мощных промышленных диодов, JLH класс А
hi-end-usilitel-jlh-klass-a-john-linsley-hood-usiliteli-JLH-amplifier-8.jpg
Усилитель А класса по схеме JLH Джона Линсли Худа в оформлении — Ежик
hi-end-usilitel-jlh-klass-a-john-linsley-hood-usiliteli-JLH-amplifier-9.jpg
Оформление усилителя класса А в стиле минимализм. Выключатель питания, входные и выходные терминалы, радиаторы и все
hi-end-usilitel-jlh-klass-a-john-linsley-hood-usiliteli-JLH-amplifier-10.jpg
Печатная плата усилителя класс А JLH на современных биполярных транзисторах
Конструктив усилителя JLH, видны емкости блока питания и платы закрепленные на радиаторах
Тороидальный трансформатор усилителя JLH рядом с магнитным экраном
Трансформатор усилителя Джона Линсли Худа в магнитном экране
Вид усилителя JLH с установленным в корпус силовым тороидальным трансформатором
Усилитель класс А JLH с радиаторами, вынесенными за габарит корпуса
Для охлаждения радиаторов снизу радиаторов прикреплены вентиляторы. Усилитель JLH
Усилитель JLH собран в минималистском корпусе с каменной передней панелью
Для сборки усилителя JLH применен корпус от промышленного измерительного прибора
Радиаторы выходных транзисторов охлаждаются вентиляторами, класс А всегда сильно греется
Для блока питания усилителя JLH радиолюбителем применен перемотанный трансформатор от старого лампового телевизора
В этом конструктиве усилителя JLH применены радиаторы от процессоров системных блоков
Применение вентиляторов для охлаждения выходных транзисторов позволяет сделать усилитель JLH довольно компактным
Усилитель JLH работающий в классе А имеет минимум деталей, но их качество должно быть максимально возможным
Выходные транзисторы на радиаторах, емкости питания и несложный монтаж усилителя JLH
Выходные транзисторы усилителя JLH и раздельного по каналам стабилизатора напряжения на радиаторе
DVI собранные печатные платы для сборки усилителя JLH1969 от магазина Алиэкспресс
Печатные платы JLH1969 собраны очень качественно, хотя сами детали довольно посредственные
Для получения действительно высокого качества звучания JLH1969 резисторы и особенно — электролитические конденсаторы лучше заменить на аудиофильские
В продаваемых на Али экспресс DIV платах усилителя JLH-1969 устанавливаются оригинальные силовые транзисторы

Новое — это хорошо забытое старое

Последние несколько лет наблюдается волна интереса к знаменитому усилителю Джона Линсли Худа (John Linsley-Hood). Повышенный интерес к JLH обусловлен тем, что интернет-магазины и аукционы Hi-End начали предлагать множество вариаций этого усилителя в готовом виде и в виде комплектов для домашней сборки. На многочисленных форумах по электронике и звукотехнике проводятся бурные обсуждения предложенной более 40 лет назад схемы и способов ее улучшения применительно к сегодняшней компонентной базе.

Нередко лейбл «JLH» навешивают на конструкции, ничего общего с легендарным оригинальным усилителем не имеющие. Предлагаю разобраться в достоинствах и недостатках этого усилителя класса А и его поразительно изящной, и простой схемотехнике. Усилитель этого талантливого инженера из Англии, созданный почти 50 лет назад дожил до сегодняшнего дня пережив несколько реинкарнаций, и сегодня, в конце 2016 года он, по-прежнему будоражит воображение настоящих аудиофилов.

Первая публикация схемы появилась в журнале «Wireless World» в 1959 году. Перевод основной идеи схемы John Linsley-Hood:

«В последнее время издания для любителей качественного звучания опубликовали множество схем усилителей на транзисторах, большинство из которых малопригодны для повторения ввиду чрезвычайной сложности для повторения среднестатистическим радиолюбителем. Мощность предлагаемых к повторению транзисторных усилителей как правило многократно завышена, что совершенно не требуется для комфортного прослушивания музыки в обычной комнате. Повышенная мощность тянет за собой необходимость применения дорогостоящих транзисторов и мощных блоков питания. До эры появления транзисторов огромной популярностью пользовались ламповые усилители фирм Mullard, Leak и другие обладающие выходной мощностью до 10-15 Ватт на канал, которой с лихвой хватало для воспроизведения практически любой музыки в условиях реальной жилой комнаты. Уровень громкости с колонками средней чувствительности и такой выходной мощностью усилителя в стерео-режиме получался даже больше необходимого. Инженеру Джону Линсли Худу пришла идея разработать простой для повторения, но максимально качественный усилитель класса А с разумной выходной мощностью и минимально возможными искажениями. Что он блистательно и осуществил»

Один из приверженцев максимально простых и линейных Hi-End усилителей класса «А» и по совместительству владелец фирмы «Pass Aleph» Нельсон Пасс (Nelson Pass) написал в своей статье, что усилитель Д. Ли. Худа даже спустя 40 лет восхищает великолепным качеством звучания при предельно простотой конструкции.

Искажения и выходная мощность

В период 1947-1949 годов патриарх усилителе строения David Theodore Nelson Williamson написал в серии статей, опубликованных в том же журнале «Wireless World», что величина искажений для высококачественного звуковоспроизведения не должна превышать 0,1%. Основные искажения в ламповом усилителе вносит выходной трансформатор, а поскольку транзисторные конструкции могут обойтись без этого нелинейного элемента, то требования к транзисторным схемам можно ужесточить. Можно считать допустимыми не более 0,05% искажений, вносимых транзисторным усилителем при полной выходной мощности в полосе частот от 30 Гц до 20 кГц.

В связи с «гонкой мощностей» когда во главу угла ставились параметры усилителей, а их реальное звучание отодвигалось на второй план, подавляющее число разработок и воплощение их в готовых конструкциях было сосредоточено на усилителях класса «В» или «АВ». Потенциальный клиент читал отзывы об усилителях в аудио прессе и его глаза невольно наталкивались на эту «гонку параметров». На первое место ставились преимущества усилителей с характеристиками, изобилующие многими нулями: 0,01 – 0,001 % искажений, 100 – 200 – 300 Ватт выходной мощности, а не редко и больше. Эти цифры объявлялись «главными достоинствами» усилителей, а их цена напрямую зависела от количества нулей. Потенциальный покупатель усилителя намеренно ставился перед искусственно навязанным выбором, таким же, как в случае с автомобилями и рекламируемыми «преимуществами» с упором на мощность двигателя и максимальную скорость. В отличие от автомобиля, в усилителях выходная мощность и уровень искажений к реальному качеству звучания имеют очень опосредованное отношение. На звук гораздо большее влияние оказывает грамотно выбранная схемотехника, режимы работы каждого каскада и качество деталей.

По простому о классах «А» и «АВ»

Усилители класса А получили малое распространение в первую очередь из-за низкого КПД. При «гонке параметров» когда рынок требует от усилителя получение выходных мощностей 50 – 100 – 200 и более Ватт в канал применять режим класса А крайне невыгодное и неблагодарное мероприятие. Потребляемую мощность с этим режимом нужно смело умножить на три или четыре, и вся эта мощность, в отличие от полезной не идет на динамики, а преобразуется в банальное тепло. Соответственно для усилителя, работающего в классе А требуется блок питания в три — четыре раза мощнее аналогичного, работающего в классе АВ. Плюс, нужны огромные радиаторы, которые должны рассеять излишнее тепло. Себестоимость усилителя довольно сильно зависит от мощности блока питания и размеров радиаторов выходных транзисторов. В итоге усилители класса «А» получаются намного более дорогими и «горячими» в прямом смысле этого слова, по сравнению с аналогичными по мощности усилителями, работающими в классе АВ.

Вот этот маленький КПД усилителей класса А помноженный на «Горячесть» и высокую по сравнению с моделями класса «АВ» стоимость и предопределил малую распространенность этих на самом деле – замечательных конструкций.

Если абстрагироваться от желания получить сто ваттные мощности на выходе и смириться с повышенным тепловыделением, усилители класса А по звучанию уложат «на обе лопатки» абсолютно все другие модели усилителей с их техническими изысками. Как правило усилители класса А намного более просты схемотехнически, чем их собратья, работающие в других режимах. Режим работы А пришел из ламповых схем, которые отличаются от транзисторных намного более «коротким» трактом и малым количеством деталей. Платой за кажущуюся простоту является необходимость тщательного подбора каждого элемента усилителя класса А и высокие требования к качеству комплектующих.

Благодаря простой конструкции и малому количеству каскадов, усилитель класса А поддается точной настройке путем оптимизации работы каждого каскада и наилучшему согласованию каскадов между собой. В Усилителях класса АВ с их десятками и сотнями последовательно включенных звеньев, индивидуальная настройка каждого каскада в принципе невозможна. Для обеспечения приемлемых параметров в них приходится вводить глубокую отрицательную обратную связь, которая позволяя достичь заданных характеристик, при этом начисто «убивает» звук.

Особенности схемотехники JLH

Основная идея John Linsley-Hood, построение максимально простого усилителя, все каскады которого работают в классе А. В классе А транзисторы работают на максимально линейных участках своих характеристик, и имеют практически постоянную, хоть и немного повышенную температуру, при которой их параметры практически не «плывут». В классе А можно достичь очень хорошей симметрии плеч и избавиться от так называемых «коммутационных» искажений, ведь в классе А транзисторы в отличие от класса В и АВ вообще не выключаются.

Каскады класса А в однотактном включении с нагрузкой – резистором самые неэффективные по КПД в сравнении со всеми остальными вариантами включения транзисторов. Зато они самые линейные и самые «музыкальные». Путем замены резистора на дроссель или трансформатор можно повысить КПД и легко согласовать простейший каскад на транзисторе с практически любым следующим каскадом. Но это «палка о двух концах». Применив дроссель или трансформатор, мы получаем максимально качественно «звучащий» каскад, но при этом имеем в конструкции сложное, тяжелое и дорогостоящее моточное изделие.

Для упрощения и удешевления конструкции Джон Линсли Худ применил двухтактный выходной каскад с возбуждением противофазным сигналом, изображенный на Рис.1. Оптимальным решением здесь является применение каскада на транзисторе VT1 обратной проводимости (n-p-n), который для выходных транзисторов является фазоинвертором и управляет обоими плечами (верхним и нижним), собранными на транзисторах VT2 и VT3.

За счёт компенсации взаимной нелинейности характеристик транзисторов, это включение даёт низкие искажения даже без применения отрицательной обратной связи. Как бонус, низкое выходное сопротивление каскада на VT1 хорошо согласуется с довольно высоким входным сопротивлением каскадов на VT2, VT3.

Упрощенная схема усилителя JLH показана на Рис.2

Входной сигнал подается на базу транзистора VT1. С его коллектора инвертированный и усиленный сигнал поступает на базу транзистора VT2. Транзистор VT2 усиливает входной сигнал и формирует противофазные сигналы для выполненного на транзисторах VT3 и VT4 выходного каскада. Нижний выходной транзистор VT3 включен по схеме с общим эмиттером и усиливает как ток, так и напряжение. Верхний выходной транзистор VT4 включен по схеме с общим коллектором и усиливает только ток (это классический эмиттерный повторитель).

Резисторы R4-R5 задают напряжение смещения для транзистора VT1, резистор R3 формирует смещение выходного каскада. Резисторы R1-R2 задают глубину отрицательной обратной связи по току. Транзистор VT2 является сердцем этой схемы и применен здесь для управления выходным каскадом — элегантно и просто.

Нельсон Пасс являясь приверженцем максимально простых схем и коротких трактов, работающих в классе «А» обошёл стороной одну особенность представленной топологии. В своих конструкциях он применяет исключительно полевые транзисторы, которые управляются напряжением на затворе, в отличие от примененных Джоном Ли Худом биполярных транзисторов, управляемых током базы. И если в далеком 1959 году мощных серийных полевых транзисторов попросту не существовало и Джона Ли Худа можно понять, то Нельсона Паса понять сложно, по какой именно причине он не применяет в своих усилителях биполярные транзисторы.  Путем обращения к «коллективному» разуму армии любителей, повторивших конструкции как Нельсона Пасса, так и Джона Ли худа было «вычислено», что с полевыми транзисторами гораздо легче работать. Они менее капризны и для достижения искомых параметров не требуют вокруг себя «танцев с бубнами» (многомесячных настроек) как биполярные. Но тот же «коллективный разум» говорит о том, что биполярные транзисторы звучат все-таки лучше полевых… хотя это как раз не факт.

Выходной ток предыдущего каскада усилителя Джона Ли Худа является входным током для последующего. Ток коллектора транзистора VT1 является управляющим для транзистора VT2 и втекает в его базу. В других каскадах все происходит аналогично. Резистор R3 является источником стабильного тока и изменение тока коллектора транзистора VT2 полностью отражается на токе базы транзистора VT4. Такая топология построения «двойки» транзисторов делает условия их взаимного управления идеальными.

Вся идеология построения усилителя Джона Ли Худа подчиняется идее минимализма, в ней нет ничего лишнего…

Дизайн усилителя JLH родился в то время, когда эра усилителей на лампах близилась к своему завершению, транзисторы быстро вытеснили электровакуумные приборы практически из всех областей электроники. Не избежала этой участи и звуковая техника. Инженеры начали проектировать транзисторные усилители с оглядкой в первую очередь на параметры: высокую выходную мощность и предельно низкие искажения. Их разработки в большинстве своем были крайне сложны и отличались от ламповых схем применением многочисленных и глубоких обратных связей. А это, как в последствии выяснилось, качества звуку совсем не добавило.

За прошедшие 47 лет прогресс в электронной промышленности ушел далеко вперед. А вот про технику для воспроизведения звука такого сказать нельзя. За почти сто лет с момента изобретения электронного усилительного прибора – лампы, а за ней транзистора, вдруг выяснилось, что лучшее звучание имеют простые схемотехнические решения, известные уже много лет. И никакими современными технологическими изысками качество звучания почему-то не улучшается.

P.S. Усилитель JLH в отличие от конкурентов, воспроизводит почти «живую» музыку. Данный усилитель имеется в наличие. Так же Вы можете заказать аппарат в индивидуальной комплектации. Мощность усилителя JLH может варьироваться от 5 до 150 Вт на канал в классе А.

Ссылки по теме

  • Усилитель JLH часть 1 — история разработки
  • Усилитель JLH часть 2 — оригинальная версия JLH-1969
  • Усилитель JLH часть 3 — версия автора JLH-1996
  • Усилитель JLH часть 4 — апгрейд JLH-1969 и JLH-1996
  • Усилитель JLH часть 5 — модель 2003 года JLH2003
  • Усилитель JLH часть 6 — правильный источник питания
  • Усилитель JLH часть 7 — тестирование JLH1969 на звук
  • Усилитель JLH часть 8 — тест на звук JLH1996 отзывы
  • Усилитель JLH часть 9 — качество звучания JLH
  • Усилитель JLH часть 12 — подбор транзисторов 1
  • Усилитель JLH часть 13 — подбор транзисторов 2
  • Усилитель JLH часть 14 — подбор транзисторов 3
  • Усилитель JLH часть 15 — подбор пассивных элементов
  • Усилитель JLH часть 16 — электрический монтаж
  • Усилитель JLH часть 17 — механический монтаж
  • Усилитель JLH часть 18 — авторская сборка
  • Заказ усилителя JLH от Николая — часть 1
  • Заказ усилителя Худа — Часть 1
  • Заказ усилителя Худа — Часть 2
  • Заказ усилителя Худа — Часть 3
  • Заказ усилителя Худа — Часть 4

Создано: 2016-09-18

Используемые источники:

  • https://v-mire.net/na-chto-sposoben-usilitel-a-klassa-jlh-1969/
  • http://aovox.com/creativework/411

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации