Андрей Смирнов
Время чтения: ~13 мин.
Просмотров: 4

Ходовые транзисторы из поднебесной BC547 и BC557, Схема ограничения разряда Li-Ion аккумулятора.

Данный вид устройства часто используется радиолюбителями и учебными заведениями, так как характеристики биполярного NPN- транзистор BC547 транзистора позволяют ему быть задействованным в различных электронных устройствах. Поставляется преимущественно в упаковке TO-92 или усовершенствованной ТО-226. Максимальный выходной ток, который способен выдержать этот полупроводниковый прибор, составляет 100 мА.

Так же он имеет очень хорошее усиление (до 800 hFE) и низкий уровень шума (до 10 дБ), благодаря чему идеально подходит для первичных каскадов усиления сигнала. Возможность работы в полосе 300 МГц позволяет его называть высокочастотным. Типовое напряжение насыщения составляет всего 90 мВ,  являющееся его несомненным преимуществом при использовании в схемах в качестве переключателя.

Распиновка

Bc547 впервые появился на рынке радиоэлектронных компонентов в апреле 1966 года, благодаря компаниям Philips (Голландия) и Mullard (Великобритания). Это совместная доработка популярного в то время bc107. Он был идентичный по своим техническим характеристикам, но выпускался в отличии от металлического bc107 в пластиковом герметичном корпусе ТО-92. В настоящее время является действующей заменой для более старых BC107 или BC147, которые включены во множество разработок компаний Mullard и Philips.

Цоколевка корпуса ТО-92 (или ТО-226AA) у bc547 имеет три гибких вывода для дырочного монтажа. Если смотреть на скошенную часть спереди, то назначение этих выводов слева направо: эмиттер, база, коллектор. На рисунке показан базовый внешний вид устройства, который будет немного отличаться в зависимости от конкретной марки, однако характеристики и назначения выводов остаются идентичными.

pinout-bc547-300x217.jpg

Основные технические характеристики

В datasheet на bc547 обычно присутствует описание на похожие, по своим характеристикам, транзисторы серий: BC546, BC548, BC549 и BC550. Похожие, но не совсем. Между собой они все таки отличающиеся. Например, bc547 отличается величинами пороговых напряжений и находится в таблице максимальных параметров между bc546 и bc548. Также, все типы устройств разбиты по группам максимального коэффициента усиления по току hFE– от А до С. У группы «A» коэффициент усиления будет самый маленький, а у «C» наибольший.

Bc547, bc548, bc549 — это одни и те же транзисторы, создаваемые на одной и той же производственной линии. Во время процесса их тестирования непосредственно перед выпуском, на основании измерений VBCO и VCEO и шумовых составляющих их классифицирую как -7, -8 или -9.

Подробное описание можно найти в даташит от производителя. Обычно оно включает таблицу предельно допустимых значений эксплуатационных параметров и электрические характеристики, при которых устройство работает стабильно.

Предельно допустимые параметры

Предельно допустимые значения эксплуатационных параметров указываются изготовителем в самом начале технического описания. Они включают в себя следующие параметры:

  • VCEO -показывает максимальную разность потенциалов, которая может применяться между контактами коллектор- эмиттер. Например, BC547 не способен удерживать более 45 вольт, поэтому эта величина указана как безопасное рабочее напряжение, которое должно быть включено в нагрузку коллектора.
  • IС (max) — максимально допустимый ток коллектора, который может быть подан через выводы коллектор-эмиттер. Для bc547 он не должен быть больше 100 мА, так как эта величина будет пределом пробоя, выше которого устройство наверняка сгорит. Так можно заметить, что оно начинает хорошо греться даже не достигая этого предела, уже при 60 мА. Поэтому рекомендуется его использование при значениях в двое меньше IС (max).
  • PC (max) — максимальная мощность устройств или номинальная нагрузка, которая может быть подключена через его коллектор-эмиттер. Это величина вполне соответствует IС(max) и взаимосвязана с ним, составляет 500 мВт или пол ватта для всей группы.

Дополнение «max», в обозначении допустимых параметров, указывает  на их максимальные значения, но иногда оно опускается в описании. Ниже приведены полный перечень предельно допустимых значений при эксплуатации bc547, взятый из тех описания у компании Fairchild Semiconductor.

Absolute-maximum-ratings-bc547-300x114.png

Электрические характеристики

Теперь рассмотрим электрические параметры bc547. Они указываются изготовителем устройств сразу после описания придельных значений. В этих характеристиках, в отдельном столбце (test condition) указываются значения, при которых устройство было протестировано производителем. Обычно тестирование проводится при температуре окружающей среды, не более 25 градусов.

Elrctrical-characteristics-bc547-300x137.png

Коэффициент усиления

BC547 обладает достаточно большим коэффициентом усиления по току (hFE). Группа «C», согласно классификации по hFE У ,  начинается с уровня 420 и заканчивается на 800. Данные значения очень важны для биполярника и являются одним из первых критериев его выбора. Повышение уровня hFE просто приписывает конкретному устройству большую чувствительность, что означает, что оно способно запускаться при минимальных базовых токах, но при этом переключать более тяжелые нагрузки через его коллектор.

Комплементарная пара

У малошумящего транзистора, заточенного на усиление слабых сигналов высокой частот, почти всегда есть комплементарник с другим типом проводимости и близким по величине коэффициентом усиления hFE. Это обусловлено широким применением таких устройств в первичных каскадах усиления в паре. Комплементарной парой с PNP-структурой для него является BC557.

Аналоги и возможная замена

Полный современный аналог транзистора BC547 это — bc550. Так же, перед поиском аналогов рекомендуется присмотреться к соседям по даташиту, имеющим лишь небольшие отличия по пороговым напряжениям пробоя: bc546, bc548, bc549. Некоторые радиолюбители используют в качестве замены 2n3904, 2n4401, bc337, bc636, bc639, 2N3055, 2N2369, 2N3906, 2SC5200.

Еще одним, из наиболее распространенных заменителей является транзистор 2N2222. Он имеет аналогичные характеристики, включая распиновку и корпус. Различия лишь в большей по величине мощности рассеивания (до 625 мВт), токе коллектора до 600 мА и немного увеличенными входными и выходными емкостями. Входные и выходные емкости могут влиять лишь на цепи во время работы на высоких частотах. Таким образом, если нужно большее усиление, то можно использовать 2n2222.

Устройство серии КТ3102, минского производителя электронных компонентов «Интеграл», так же подойдет для замены. А отечественные аналоги транзистора bc547 будут — КТ3102Г и КТ3102Е, если выбирать по коэффициенту усиления (до 1000 hFE ), они даже лучше bc547c. Ниже приведена таблица соответствия для различных групп этой серии.

Маркировка

BC547 разработан компанией Philips в 1966 году в Голландии, поэтому маркировка у него соответствует европейской системе Pro Electron. Первая буква обозначает тип используемого полупроводника —  «B» для кремния. Вторая буква указывает на частоту работы — «C» маломощный, низкочастотный. Несмотря на то, что он высокочастотный (до 300 МГц), изготовитель по каким то причинам указал его в маркировке низкочастотным. О причинах такого наименования история умалчивает. Иногда в обозначении не пишут первую букву и тогда получается: c547b, c547c, с547в, c547b.

Немного о стандартах

Изготовители постоянно совершенствуют процесс производства и могут изменять указанные характеристики, но они не должны быть меньше величин зарегистрированных для bc457 в стандарте Pro Electron. Например, у компании On Semiconductor максимальная мощность (при 25°C) устройства достигает 625 мВт, оно в настоящее время наиболее распространено. У компании Philips коэффициент усиления hFE для группы «B» варьируется от 220 до 475. У некоторых компаний-изготовителей появилась поддержка импульсного тока коллектора (до 200 мА). Поэтому пред использованием устройства в своих проектах повторно ознакомьтесь с его техническим описанием.

Принцип работы

Когда на клеммы подается входное напряжение, некоторое количество тока (IB) начинает течь от базы к эмиттеру и управляет током на коллекторе (IC). Напряжение между базой и эмиттером (VBE) для NPN-структуры должно быть прямым. Т.е. на базу прикладывается положительный потенциал, а на эмиттер отрицательный. Полярность напряжения, приложенного к каждому выводу, показана на рисунке ниже.

Входной сигнал усиливается на базе, а затем передается на эмиттер. Меньшее количество тока в базе используется для управления большим, между коллектором и эмиттером (IC).

Транзисторы n-p-n-структуры иногда называют полупроводниковыми приборами прямой проводимости.

Когда транзистор открыт, он способен пропускать IC до 100 мА. Этот этап называется областью насыщения. При этом допустимое напряжение между коллектором и эмиттером (VBE) может составлять около 200 мВ,а VBE достигать 900 мВ. Когда ток базы перестает течь, транзистор полностью отключается, эта ступень называется областью отсечки, а VBE будет составлять около 650 мВ.

Применение

Широко применяется в ключевом и усиливающем режиме, в различных схемах управления драйверами реле, светодиодов, двигателей, а также схемах усиления сигналов низкой и высокой частоты. Примеры схем и порядок создания простых устройств, методом навесного монтажа, можно посмотреть в видео. В нем представлена информация по возможностям использования bc547 в некоторых проектах: задержку выключения своими руками, автоматического освещения, светодиодный стробоскоп, простейшая охранная сигнализация и аудио усилитель.

Производители

Такие компании, как NXP, Philips, Micro Electronics, Fairchild, ON Semiconductor,  Vishay и многие другие, являются лидерами в производстве этого устройства.

  • Цена: $1.99 (по 50 шт каждых)

Если вы начали заниматься любительской радиотехникой, вам понадобятся ходовые транзисторы, которые имею широкое применение в радиотехнике и сравнительно низкую цену. В данном обзоре я расскажу вам про комплементарную пару транзисторов BC547 и BC557. Данные транзисторы были куплены в 2013 году и на их основе уже собранно множество электронных схем. Одной из них, я вас познакомлю в данном обзоре. Мы все, часто покупаем Li-Ion аккумуляторы в Китае. Многие из них не имеют защиты, но даже имеющие защиту отключают питание в аварийных ситуациях, когда напряжение на АКБ уменьшится на 2.4-2.6В. В тоже время производители рекомендуют ставить аккумуляторы на зарядку при достижении напряжения 3В. Как быть, если это самодельный фонарь и т.п., как сберечь не дешевые Li-Ion аккумуляторы? Вы сталкивались с такими проблемами? Тогда вам под Кат… Для начала сообщу, что, как и в остальных обзорах, магазин, в котором я купил данные радиокомпоненты уже не продает данный лот, потому я нашел подобный у другого продавца. Что бы не было сомнения, что я купил данные транзисторы на Али, можно увидеть под спойлером подтверждение покупки:Ранее эти транзисторы стоили дороже Я постараюсь вкратце рассказать об этих транзисторах, насколько это возможно на не специализированном сайте по радиотехнике, что бы достопочтенная публика, зашедшая в мой обзор из-за любопытства, не стала зевать и скучать. Всем же «технарям» будет достаточно поглядеть на Даташит этих транзисторов, что бы отпали все вопросы: BC547 и BC557 Данные транзисторы комплементарно парные, т.е NPN и PNP транзисторы с близкими по величине коэффициентами передачи тока β. Краткие характеристики и цоколевка транзистора ниже на схеме: Я протестировал эти китайские транзисторы, они держат напряжение 30В (коллектор-эмиттер) имеют коэффициент усиления Hfe: 140-160. Я использовал их при максимальном токе коллектора 100мА — выше не рисковал. В общем, заключение по транзисторам — вполне годные высокочастотные транзисторы имеющие высокий коэффициент усиления. Вполне приемлемые характеристики. На этом бы можно было обзор и закончить…))) Но это не наш метод ©. Потому мы изготовим очень востребованное устройство, использующее PNP транзистор, регулируемый стабилитрон TL431 и N канальный полевой транзистор (выпаян из старой материнской платы). При изготовлении самоделок, часто требуется ограничить разряд Li-Ion аккумуляторов, до рекомендуемого производителем минимума в 3В. Чаще всего мы покупаем аккумуляторы без защиты. Но даже если аккумулятор имеет защитную плату, то все равно она скорее пригодна только для аварийного отключения аккумулятора, что бы предотвратить его возгорание или приведение в полную негодность. Схему типовой платы защиты привожу ниже: Эта схема взята из Даташита микросхемы-контролера DW01, которая имеет очень много китайских аналогов. Данная схема уже приводилась в обзоре на Муське Однако, как я уже отметил, данная схема пригодна только для аварийного отключения аккумулятора и малопригодна для повседневного использования, т.к отключает АКБ при напряжении 2.4-2.6В. Поискав в Интернета, ничего не нашел простого и пригодного для отключения литиевого аккумулятора, потому попросил своего друга по форуму «Паяльник» Владимира 65, смоделировать мне схему под мои нужды. Так и появилась на свет эта схема защиты от переразряда. Привожу её ниже: Транзистор VT1 — Logic Level P75N02LD (можно любой другой Logic Level) Транзистор VT2 — BC557 VD1 — TL431 Кнопка S1 (без фиксации) нужна для запуска схемы, после срабатывания защиты, или для принудительного использования заряда батареи, при уровне заряда ниже порогового значения. На скору руку была изготовлена печатная плата (каюсь, опять из гетинакса), впаяны детали. Полевой транзистор можно использовать со старых материнских плат, обычно там несколько штук N канальных Logic Level транзисторов. Транзистор распаян со стороны печатных дорожек.

ссылка на схему в формате lay Тестирование проводилось при помощи Лабораторного блока питания и лампочки в качестве нагрузки. Результат тестирования Вы можете увидеть ниже на фото:
Напряжение отсечки выставлено на 3В, на фото видно, что еще при 3.1В лампочка горит, а при 3В полевой транзистор закрывается и лампочка обесточивается. Сама схема выполнена таким образом, что после достижения на аккумуляторе порогового напряжения, схема защиты тоже отключается от аккумулятора. Потому пришлось ввести в схему кнопку без фиксации, нажатие на которую открывает транзистор. Так же эту кнопку можно использовать для принудительного использования энергии аккумулятора, даже если напряжение на нем ниже порогового уровня… Эта функция бывает востребована, что бы не в полной в темноте искать зарядное устройство))) В заключение покажу кемпинговый фонарь, куда я встроил эту схему защиты от разряда… На этом фото (ниже) видно комбинированную схему, зарядного устройства совмещенной с схемой защитного устройства на smd элементах Вот такой коротенький обзор сегодня… Вопросы скидывайте в комментариях, постараюсь ответить всем. UPD: Поскольку много вопросов в комментариях, расскажу как работает схема ограничения. Полевой транзистор можно представить электронным выключателем (по сути он это и есть), при появлении напряжения на его затворе, он открывается и будет открытым, пока напряжение на затворе не исчезнет. В момент кратковременного замыкания кнопки, питание появляется на TL431, и если напряжение выше выставленного порога, то TL открывается и открывает полевой транзистор. В таком положении, все будет находиться, до тех пор пока напряжение упадет ниже порога. Порог выставляется подстроечным резистором. Таким образом обобщим: 1. Если к схеме присоединить литиевый аккумулятор, то ничего не произойдет, не смотря на уровень зарядки аккумулятора. 2. Если нажать кратковременно кнопку, то если напряжение на аккумуляторе выше 3В, то схема сработает, если ниже 3В, то ничего не произойдет. 3. Если поставить на зарядку аккумулятор, не отключая плату защиты, то тоже ничего не произойдет, даже если акб полностью зарядится, пока вы не нажмете кнопку, а дальше 2 варианта рассмотренных в п.2. 4. Варианта отключить схему защиты нет, после открытия полевого транзистора, схема остается во «включенном» состоянии и кушает, пусть небольшой ток, но все же кушает. Помогает только «передергивание» аккумулятора. Ток потребляемый платой защиты можно снизить увеличив номинал резисторов делителя R5-R6. Теперь почему я собрал эту схему и получил справедливую критику от нашего профессора kirich: в 2013 году не было зарядных устройств с защитой АКБ от глубокого разряда, потому я даже купил у китайцев набор и 10 микросхем DW01 и двойных полевиков (8 ножковая микросхема) стоимостью 6.8 баксов. Подтверждение покупки под спойлеромПокупка Если бы это было доступно как сейчас, то я бы не маялся «дурью»… Некоторые плюсы моей схемы: 1. Её можно очень легко перестроить под другое напряжение, отличное от напряжения литиевого аккумулятора 2. Можно всячески менять схему, например вынести TL431 и 2 резистора делителя, перед полевиком, тогда схема начнет работать по другому, автоматически отключатся при пороговом напряжении, и автоматически включатся если напряжение подымется выше порога (при зарядке, к примеру), но при напряжении около порога будет небольшая светомузыка, т.к нет гистерезиса))) Ну может кому то это надо… UPD2: Вот еще схема, правда тестировалась только в мультисиме, в железе не собиралась.

Добавил в схему защиты выключатель нагрузки. Нефиксируемая кнопка на замыкание последовательно включает и выключает нагрузку. Функция защиты от разряда сохранилась. Схема только в мультисиме, в железе не проверялась.

UPD3: Ну раз пошла такая пьянка, режь последний огурец… Еще схемы… Правда от цен на супервизоры просто охреневаю… Используемые источники:

  • https://shematok.ru/transistor/bc547
  • https://mysku.ru/blog/aliexpress/50125.html

Рейтинг автора
5
Подборку подготовил
Максим Уваров
Наш эксперт
Написано статей
171
Ссылка на основную публикацию
Похожие публикации